Genetic programming theory and practice XI
著者
書誌事項
Genetic programming theory and practice XI
(Genetic and evolutionary computation series)
Springer, 2014
- : pbk
大学図書館所蔵 全1件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
"The work described in this book was first presented at the Eleventh Workshop on Genetic Programming, Theory and Practice, organized by the Center for the Study of Complex Systems at the University of Michigan, Ann Arbor, held on May 9-11, 2013"--pref
Includes bibliographical references and index
内容説明・目次
内容説明
These contributions, written by the foremost international researchers and practitioners of Genetic Programming (GP), explore the synergy between theoretical and empirical results on real-world problems, producing a comprehensive view of the state of the art in GP. Topics in this volume include: evolutionary constraints, relaxation of selection mechanisms, diversity preservation strategies, flexing fitness evaluation, evolution in dynamic environments, multi-objective and multi-modal selection, foundations of evolvability, evolvable and adaptive evolutionary operators, foundation of injecting expert knowledge in evolutionary search, analysis of problem difficulty and required GP algorithm complexity, foundations in running GP on the cloud - communication, cooperation, flexible implementation, and ensemble methods. Additional focal points for GP symbolic regression are: (1) The need to guarantee convergence to solutions in the function discovery mode; (2) Issues on model validation; (3) The need for model analysis workflows for insight generation based on generated GP solutions - model exploration, visualization, variable selection, dimensionality analysis; (4) Issues in combining different types of data. Readers will discover large-scale, real-world applications of GP to a variety of problem domains via in-depth presentations of the latest and most significant results.
目次
Extreme Accuracy in Symbolic Regression.- Exploring Interestingness in a Computational Evolution System for the Genome-Wide Genetic Analysis of Alzheimer's Disease.- Optimizing a Cloud Contract Portfolio using Genetic Programming-based Load Models.- Maintenance of a Long Running Distributed Genetic Programming System for Solving Problems Requiring Big Data.- Grounded Simulation: Using Simulated Evolution to Guide Embodied Evolution.- Applying Genetic Programming in Business Forecasting.- Explaining Unemployment Rates with Symbolic Regression.- Uniform Linear Transformation with Repair and Alternation in Genetic Programming.- A Deterministic and Symbolic Regression Hybrid Applied to Resting-State fMRI Data.- Gaining Deeper Insights in Symbolic Regression.- Geometric Semantic Genetic Programming for Real Life Applications.- Evaluation of Parameter Contribution to Neural Network Size and Fitness in ATHENA for Genetic Analysis.
「Nielsen BookData」 より