Calculus for cognitive scientists : partial differential equation models
著者
書誌事項
Calculus for cognitive scientists : partial differential equation models
(Cognitive science and technology)
Springer Science+Business Media, c2016
大学図書館所蔵 件 / 全1件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references and index
内容説明・目次
内容説明
This book shows cognitive scientists in training how mathematics, computer science and science can be usefully and seamlessly intertwined. It is a follow-up to the first two volumes on mathematics for cognitive scientists, and includes the mathematics and computational tools needed to understand how to compute the terms in the Fourier series expansions that solve the cable equation. The latter is derived from first principles by going back to cellular biology and the relevant biophysics. A detailed discussion of ion movement through cellular membranes, and an explanation of how the equations that govern such ion movement leading to the standard transient cable equation are included. There are also solutions for the cable model using separation of variables, as well an explanation of why Fourier series converge and a description of the implementation of MatLab tools to compute the solutions. Finally, the standard Hodgkin - Huxley model is developed for an excitable neuron and is solved using MatLab.
目次
Introduction.- Graham - Schmidt Orthogonalization.- Numerical Differential Equations.- Biological Molecules.- Ion Movement.- Lumped and Distributed Cell Models.- Time Independent Solutions to Infinite Cables.- Time Independent Solutions to Finite and Half-Infinite Space Cables.- A Primer On Series Solutions.- Linear Partial Differential Equations.- Simplified Dendrite - Soma - Axon Information Processing.- The Basic Hodgkin - Huxley Model.- Final Thoughts.- Background Reading.
「Nielsen BookData」 より