The basics of item response theory using R
著者
書誌事項
The basics of item response theory using R
(Statistics for social and behavorial sciences)
Springer, 2017
- : softcover
大学図書館所蔵 全7件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
"Softcover reprint of the hardcover 1st edition 2017"--T.p. verso
Includes bibliographical references (p. 171-172) and index
内容説明・目次
内容説明
This graduate-level textbook is a tutorial for item response theory that covers both the basics of item response theory and the use of R for preparing graphical presentation in writings about the theory. Item response theory has become one of the most powerful tools used in test construction, yet one of the barriers to learning and applying it is the considerable amount of sophisticated computational effort required to illustrate even the simplest concepts. This text provides the reader access to the basic concepts of item response theory freed of the tedious underlying calculations. It is intended for those who possess limited knowledge of educational measurement and psychometrics.
Rather than presenting the full scope of item response theory, this textbook is concise and practical and presents basic concepts without becoming enmeshed in underlying mathematical and computational complexities. Clearly written text and succinct R code allow anyone familiar with statistical concepts to explore and apply item response theory in a practical way. In addition to students of educational measurement, this text will be valuable to measurement specialists working in testing programs at any level and who need an understanding of item response theory in order to evaluate its potential in their settings.
目次
Introduction.- Getting Started.- 1. The Item Characteristic Curve.- 2. Item Characteristic Curve Models.- 3. Estimating Item Parameters.- 4. The Test Characteristic Curve.- 5. Estimating an Examinee's Ability.- 6. The Information Function.- 7. Test Calibration.- 8. Specifying the Characteristics of a Test.- Appendix A: R Introduction.- Appendix B: Estimating Item Parameters under the Two-Parameter Model with Logistic Regression.- Appendix C: Putting the Three Tests on a Common Ability Scale: Test Equating.- References.- Index.
「Nielsen BookData」 より