An introduction to secondary data analysis with IBM SPSS statistics
著者
書誌事項
An introduction to secondary data analysis with IBM SPSS statistics
Sage, 2017
大学図書館所蔵 全1件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. [320]) and index
内容説明・目次
内容説明
Many professional, high-quality surveys collect data on people's behaviour, experiences, lifestyles and attitudes. The data they produce is more accessible than ever before. This book provides students with a comprehensive introduction to using this data, as well as transactional data and big data sources, in their own research projects. Here you will find all you need to know about locating, accessing, preparing and analysing secondary data, along with step-by-step instructions for using IBM SPSS Statistics.
You will learn how to:
Create a robust research question and design that suits secondary analysis
Locate, access and explore data online
Understand data documentation
Check and 'clean' secondary data
Manage and analyse your data to produce meaningful results
Replicate analyses of data in published articles and books
Using case studies and video animations to illustrate each step of your research, this book provides you with the quantitative analysis skills you'll need to pass your course, complete your research project and compete in the job market. Exercises throughout the book and on the book's companion website give you an opportunity to practice, check your understanding and work hands on with real data as you're learning.
目次
Chapter 1: Secondary Data Analysis: The Evidence is Out There
Chapter 2: Understanding the Basics of Statistics
Chapter 3: Doing Secondary Data Analysis in Five Minutes
Chapter 4: Getting Started with SPSS
Chapter 5: Dealing with Data Documentation
Chapter 6: Replicating Published Analyses
Chapter 7: Preparing Your Data
Chapter 8: Managing and Manipulating Data
Chapter 9: Introducing Linear Regression
Chapter 10: Getting Started with Logistic Regression
Chapter 11: Using Binary Logistic Regression
Chapter 12: Practising Regression Skills With Replication
Chapter 13: A Look Back: How to Enjoy 'An Avalanche of Numbers'
「Nielsen BookData」 より