Introduction to the practice of statistics
著者
書誌事項
Introduction to the practice of statistics
Macmillan Education, c2017
9th ed
大学図書館所蔵 全9件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
Introduction to the Practice of Statistics is the classic textbook for teaching statistics. This textbook shows students how to produce and interpret data from real-world contexts, guiding them through the type of data gathering and analysis that working statisticians do every day. With this phenomenally successful approach developed by David Moore and George McCabe, statistics is more than just a collection of techniques and formulas. Instead, students develop a way of thinking about data with a focus on problem-solving that helps them understand concepts and master statistical reasoning.
Part of the best-selling Moore family of statistics books, Introduction to the Practice of Statistics is designed for a two-semester 'introduction to statistics' course and offers a rigorous introduction to the subject. This textbook is available on LaunchPad, which combines an interactive ebook with multimedia content and assessment tools, including LearningCurve adaptive quizzing. See 'Instructor Resources' and 'Student Resources' for further information.
目次
1.1 Data.-
1.2 Displaying Distributions with Graphs.-
1.3 Describing Distributions with Numbers.-
1.4 Density Curves and Normal Distributions.-
2.1 Relationships.-
2.2 Scatterplots.-
2.3 Correlation.-
2.4 Least-Squares Regression.-
2.5 Cautions about Correlation and Regression.-
<2.6 Data Analysis for Two-Way Tables.-
2.7 The Question of Causation.-
3.1 Sources of Data.-
3.2 Design of Experiments.-
3.3 Sampling Design.-
3.4 Ethics.-
4.1 Randomness.-
4.2 Probability Models.-
4.3 Random Variables.-
4.4 Means and Variances of Random Variables.-
4.5 General Probability Rules.-
5.1 Toward Statistical Inference.-
5.2 The Sampling Distribution of a Sample Mean.-
5.3 Sampling Distributions for Counts and Proportions.-
6.1 Estimating with Confidence.-
6.2 Tests of Significance.-
6.3 Use and Abuse of Tests.-
6.4 Power and Inference as a Decision
Power.-
7.1 Inference for the Mean of a Population.-
7.2 Comparing Two Means.-
7.3 Additional Topics on Inference.-
8.1 Inference for a Single Proportion.-
8.2 Comparing Two Proportions.-
9.1 Inference for Two-Way Tables.-
10.1 Simple Linear Regression.-
10.2 More Detail about Simple Linear Regression.-
11.1 Inference for Multiple Regression.-
11.2 A Case Study.-
12.1 Inference for One-Way Analysis of Variance.-
12.2 Comparing the Means.-
13.1 The Two-Way ANOVA Model.-
14.1 The Logistic Regression Model.-
14.2 Inference for Logistic Regression.-
15.1 The Wilcoxon Rank Sum Test.-
15.2 The Wilcoxon Signed Rank Test.-
15.3 The Kruskal-Wallis Test.-
16.1 The Bootstrap Idea.-
16.2 First Steps in Using the Bootstrap.-
16.3 How Accurate Is a Bootstrap Distribution?.-
16.4 Bootstrap Confidence Intervals.-
16.5 Significance Testing Using Permutation Tests.-
17.1 Processes and Statistical Process Control.-
17.2 Using Control Charts.-
17.3 Process Capability Indexes.-
17.4 Control Charts for Sample Proportions.-
「Nielsen BookData」 より