Structural vector autoregressive analysis
著者
書誌事項
Structural vector autoregressive analysis
(Themes in modern econometrics)
Cambridge University Press, 2017
- : hardback
- : pbk
大学図書館所蔵 全26件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Some copies have different pagination: xx, 735 p.
Includes bibliographical references (p. 673-712) and indexes
内容説明・目次
内容説明
Structural vector autoregressive (VAR) models are important tools for empirical work in macroeconomics, finance, and related fields. This book not only reviews the many alternative structural VAR approaches discussed in the literature, but also highlights their pros and cons in practice. It provides guidance to empirical researchers as to the most appropriate modeling choices, methods of estimating, and evaluating structural VAR models. The book traces the evolution of the structural VAR methodology and contrasts it with other common methodologies, including dynamic stochastic general equilibrium (DSGE) models. It is intended as a bridge between the often quite technical econometric literature on structural VAR modeling and the needs of empirical researchers. The focus is not on providing the most rigorous theoretical arguments, but on enhancing the reader's understanding of the methods in question and their assumptions. Empirical examples are provided for illustration.
目次
- 1. Introduction
- 2. Vector autoregressive models
- 3. Vector error correction models
- 4. Structural VAR tools
- 5. Bayesian VAR analysis
- 6. The relationship between VAR models and other macroeconometric models
- 7. A historical perspective on causal inference in macroeconometrics
- 8. Identification by short-run restrictions
- 9. Estimation subject to short-run restrictions
- 10. Identification by long-run restrictions
- 11. Estimation subject to long-run restrictions
- 12. Inference in models identified by short-run or long-run restrictions
- 13. Identification by sign restrictions
- 14. Identification by heteroskedasticity or non-gaussianity
- 15. Identification based on extraneous data
- 16. Structural VAR analysis in a data-rich environment
- 17. Nonfundamental shocks
- 18. Nonlinear structural VAR models
- 19. Practical issues related to trends, seasonality, and structural change
- References
- Index.
「Nielsen BookData」 より