Applied nanoindentation in advanced materials

著者

    • Tiwari, Atul
    • Natarajan, Sridhar

書誌事項

Applied nanoindentation in advanced materials

edited by Atul Tiwari and Sridhar Natarajan

John Wiley & Sons, c2017

大学図書館所蔵 件 / 1

この図書・雑誌をさがす

注記

Includes bibliographical references and index

内容説明・目次

内容説明

Research in the area of nanoindentation has gained significant momentum in recent years, but there are very few books currently available which can educate researchers on the application aspects of this technique in various areas of materials science. Applied Nanoindentation in Advanced Materials addresses this need and is a comprehensive, self-contained reference covering applied aspects of nanoindentation in advanced materials. With contributions from leading researchers in the field, this book is divided into three parts. Part one covers innovations and analysis, and parts two and three examine the application and evaluation of soft and ceramic-like materials respectively. Key features: A one stop solution for scholars and researchers to learn applied aspects of nanoindentation Contains contributions from leading researchers in the field Includes the analysis of key properties that can be studied using the nanoindentation technique Covers recent innovations Includes worked examples Applied Nanoindentation in Advanced Materials is an ideal reference for researchers and practitioners working in the areas of nanotechnology and nanomechanics, and is also a useful source of information for graduate students in mechanical and materials engineering, and chemistry. This book also contains a wealth of information for scientists and engineers interested in mathematical modelling and simulations related to nanoindentation testing and analysis.

目次

List of Contributors xvii Preface xxiii Part I 1 1 Determination of Residual Stresses by Nanoindentation 3 P-L. Larsson 1.1 Introduction 3 1.2 Theoretical Background 5 1.3 Determination of Residual Stresses 12 1.3.1 Low Hardening Materials and Equi-biaxial Stresses 12 1.3.2 General Residual Stresses 13 1.3.3 Strain-hardening Effects 15 1.3.4 Conclusions and Remarks 15 References 16 2 Nanomechanical Characterization of Carbon Films 19 Ben D. Beake and TomaszW. Liskiewicz 2.1 Introduction 19 2.1.1 Types of DLC Coatings and their Mechanical Properties 19 2.1.2 Carbon Films Processing Methods 20 2.1.3 Residual Stresses in Carbon Films 21 2.1.4 Friction Properties of Carbon Films 22 2.1.5 Multilayering Strategies 23 2.1.6 Applications of Carbon Films 24 2.1.7 Optimization/testing Challenges 24 2.2 Factors Influencing Reliable and Comparable Hardness and Elastic Modulus Determination 24 2.2.1 The International Standard for Depth-sensing Indentation: EN ISO 14577-4 : 2007 24 2.2.2 Challenges in Ultra-thin Films 27 2.2.3 Indenter Geometry 28 2.2.4 Surface Roughness 28 2.3 Deformation in Indentation Contact 30 2.3.1 The Relationship Between H/E and Plastic and ElasticWork in Nanoindentation 30 2.3.2 Variation in H/E and Plasticity Index for Different DLC Films 31 2.3.3 Cracking and Delamination 32 2.3.4 Coatings on Si: Si Phase Transformation 33 2.4 Nano-scratch Testing 34 2.4.1 Scan Speed and Loading Rate 35 2.4.2 Influence of Probe Radius 36 2.4.3 Contact Pressure 36 2.4.4 Role of the Si Substrate in Nano-scratch Testing 38 2.4.5 Failure Behaviour of ta-C on Si 40 2.4.6 Film Stress and Thickness 43 2.4.7 Repetitive Nano-wear by Multi-pass Nano-scratch Tests 44 2.4.8 Load Dependence of Friction 46 2.5 Impact and Fatigue Resistance of DLC Films Using Nano-impact Testing 46 2.5.1 Compositionally Graded a-C and a-C:H Coatings on M42 Tool Steel 49 2.5.2 DLC/Cr Coating on Steel 51 2.5.3 PACVD a-C:H Coatings on M2 Steel 51 2.5.4 DLC Films on Si-film Thickness, Probe Geometry, Impact Force and Interfacial Toughness 52 2.6 Wear Resistance of Amorphous Carbon Films Using Nano-fretting Testing 54 2.6.1 Nano-fretting: State-of-the-art 55 2.6.2 Nano-fretting of Thin DLC Films on Si 55 2.6.3 Nano-fretting of DLC Coatings on Steel 57 2.7 Conclusion 58 References 59 3 Mechanical Evaluation of Nanocoatings under Extreme Environments for Application in Energy Systems 69 E.J. Rubio, G. Martinez, S.K. Gullapalli, M. Noor-A-Alam and C.V. Ramana 3.1 Introduction 69 3.2 Thermal Barrier Coatings 70 3.2.1 Nanoindentation Characterization of TBCs 72 3.2.2 Mechanical Properties of Hafnium-based TBCs 74 3.3 Nanoindentation Evaluation of Coatings for Nuclear Power Generation Applications 76 3.3.1 Evaluation ofW-based Materials for Nuclear Application 77 3.4 Conclusions and Outlook 80 Acknowledgments 81 References 81 4 Evaluation of the Nanotribological Properties of Thin Films 83 ShojiroMiyake and MeiWang 4.1 Introduction 83 4.2 Evaluation Methods of Nanotribology 83 4.3 Nanotribology Evaluation Methods and Examples 84 4.3.1 Nanoindentation Evaluation 84 4.3.2 Nanowear and Friction Evaluation 88 4.3.2.1 Nanowear Properties 89 4.3.2.2 Frictional Properties with Different Lubricants 91 4.3.2.3 Nanowear and Frictional Properties, Evaluated with and without Vibrations 95 4.3.3 Evaluation of the Force Modulation 98 4.3.4 Evaluation of the Mechanical and Other Physical Properties 102 4.4 Conclusions 108 References 108 5 Nanoindentation on Tribological Coatings 111 Francisco J.G. Silva 5.1 Introduction 111 5.2 Relevant Properties on Coatings for Tribological Applications 116 5.3 How can Nanoindentation Help Researchers to Characterize Coatings? 116 5.3.1 Thin Coatings Nanoindentation Procedures 118 5.3.2 Hardness Determination 120 5.3.3 Young's Modulus Determination 123 5.3.4 Tensile Properties Determination 124 5.3.5 Fracture Toughness inThin Films 125 5.3.6 Coatings Adhesion Analysis 126 5.3.7 Stiffness and Other Mechanical Properties 127 5.3.8 Simulation and Models Applied to Nanoindentation 128 References 129 6 Nanoindentation of Macro-porous Materials for Elastic Modulus and Hardness Determination 135 Zhangwei Chen 6.1 Introduction 135 6.1.1 Nanoindentation Fundamentals for Dense Materials 135 6.1.2 Introduction to Porous Materials 137 6.1.3 Studies of Elastic Properties of Porous Materials 138 6.2 Nanoindentation of Macro-porous Bulk Ceramics 140 6.3 Nanoindentation of Bone Materials 143 6.4 Nanoindentation of Macro-porous Films 144 6.4.1 Substrate Effect 145 6.4.2 Densification Effect 147 6.4.3 Surface Roughness Effect 149 6.5 Concluding Remarks 151 Acknowledgements 151 References 151 7 Nanoindentation Applied to DC Plasma Nitrided Parts 157 Silvio Francisco Brunatto and CarlosMauricio Lepienski 7.1 Introduction 157 7.2 Basic Aspects of DC Plasma Nitrided Parts 160 7.2.1 The Potential Distribution for an Abnormal Glow Discharge 160 7.2.2 Plasma-surface Interaction in Cathode Surface 161 7.2.3 Electrical Configuration Modes in DC Plasma Nitriding 162 7.3 Basic Aspects of Nanoindentation in Nitrided Surfaces 163 7.4 Examples of Nanoindentation Applied to DC Plasma Nitrided Parts 167 7.4.1 Mechanical Polishing: Nanoindentation in Niobium 169 7.4.2 Surface Roughness: Nanoindentation in DC Plasma Nitrided Parts 170 7.4.2.1 Nanoindentation in DC Plasma Nitrided Niobium 170 7.4.2.2 Nanoindentation in DC Plasma Nitrided Titanium 174 7.4.2.3 Nanoindentation in DC Plasma Nitrided Martensitic Stainless Steel 175 7.4.3 Nitrogen-concentration Gradients: Nanoindentation in DC Plasma Nitrided Tool Steel 176 7.4.4 Crystallographic Orientation: Nanoindentation in DC Plasma Nitrided Austenitic Stainless Steels 177 7.5 Conclusion 178 Acknowledgements 179 References 179 8 Nanomechanical Properties of Defective Surfaces 183 Oscar Rodriguez de la Fuente 8.1 Introduction 183 8.1.1 The Role of Surface Defects in Plasticity 183 8.1.2 Experimental Techniques for Visualization and Generation of Surface Defects 184 8.1.3 Approaches to Study and Probe Nanomechanical Properties 185 8.2 Homogeneous and Heterogeneous Dislocation Nucleation 186 8.2.1 Homogeneous Dislocation Nucleation 186 8.2.2 Heterogeneous Dislocation Nucleation 188 8.3 Surface Steps 190 8.3.1 Studies on Surface Steps 191 8.4 Subsurface Defects 194 8.4.1 Sub-surface Vacancies 195 8.4.2 Sub-surface Impurities and Dislocations 195 8.5 Rough Surfaces 197 8.6 Conclusions 200 Acknowledgements 200 References 200 9 Viscoelastic and Tribological Behavior of Al2O3 Reinforced Toughened Epoxy Hybrid Nanocomposites 205 Mandhakini Mohandas and AlagarMuthukaruppan 9.1 Introduction 205 9.2 Experimental 206 9.2.1 Materials 206 9.2.2 FTIR Analysis 208 9.2.3 Results and Discussion 209 9.2.3.1 Viscoeleastic Properties 210 9.2.3.2 Hardness and Modulus by Nanoindentation 214 9.3 Conclusion 219 References 220 10 Nanoindentation of Hybrid Foams 223 Anne Jung, Zhaoyu Chen and Stefan Diebels 10.1 Introduction 223 10.1.1 Motivation 223 10.1.2 State of the art of Nanoindentation of Metal and Metal Foam 226 10.2 Sample Material and Preparation 230 10.2.1 Al Material and Coating Process 230 10.2.2 Sample Preparation for Nanoindentation 231 10.3 Nanoindentation Experiments 232 10.3.1 Experimental Setup 232 10.3.2 Results and Discussion 232 10.4 Conclusions and Outlook 239 Acknowledgements 240 References 240 11 AFM-based Nanoindentation of Cellulosic Fibers 247 Christian Ganser and Christian Teichert 11.1 Introduction 247 11.2 Experimental 248 11.2.1 AFM Instrumentation 248 11.2.2 AFM-based Nanoindentation 250 11.2.3 Comparison with Results of Classical NI 255 11.2.4 Sample Preparation 256 11.3 Mechanical Properties of Cellulose Fibers 257 11.3.1 Pulp Fibers 257 11.3.2 Swollen Viscose Fibers 259 11.4 Conclusions and Outlook 265 Acknowledgments 265 References 266 12 Evaluation of Mechanical and Tribological Properties of Coatings for Stainless Steel 269 A.Mina, J.C. Caicedo,W. Aperador, M. Mozafari and H.H. Caicedo 12.1 Introduction 269 12.2 Experimental Details 270 12.3 Results and Discussion 271 12.3.1 Crystal Lattice Arrangement of -TCP/Ch Coatings 271 12.3.2 Surface Coating Analysis 272 12.3.3 Morphological Analysis of the -TCP-Ch Coatings 274 12.3.4 Mechanical Properties 276 12.3.5 Tribological Properties 279 12.3.6 SurfaceWear Analysis 280 12.3.7 Adhesion Behaviour 281 12.4 Conclusions 283 Acknowledgements 283 References 283 13 Nanoindentation in Metallic Glasses 287 Vahid Nekouie, Anish Roy and Vadim V. Silberschmidt 13.1 Introduction 287 13.1.1 Motivation 287 13.1.2 Nanoindentation Studies of Metallic Glasses 288 13.1.2.1 Pile-up and Sink-in 291 13.1.2.2 Indentation Size Effect 293 13.2 Experimental Studies 296 13.2.1 Nano Test Platform III Indentation System 296 13.2.2 Calibration 297 13.2.2.1 Frame Compliance 298 13.2.2.2 Cross-hair Calibration 298 13.2.2.3 Indenter Area Function 298 13.2.3 Experimental Procedure 301 13.2.4 Results and Discussion 301 13.3 Conclusions 307 References 308 Part II 313 14 Molecular Dynamics Modeling of Nanoindentation 315 C.J. Ruestes, E.M. Bringa, Y. Gao and H.M. Urbassek 14.1 Introduction 315 14.2 Methods 316 14.2.1 The Indentation Tip 318 14.2.2 Control Methods Used in Experiment and in MD Simulations 319 14.2.3 Penetration Rate 320 14.3 Interatomic Potentials 321 14.3.1 Elastic Constants 321 14.3.2 Generalized Stacking Fault Energies 322 14.4 Elastic Regime 324 14.5 The Onset of Plasticity 325 14.5.1 Evolution of the Dislocation Network 325 14.5.2 Contact Area and Hardness 327 14.5.3 Indentation Rate Effect 328 14.5.4 Tip Diameter Effect 329 14.6 The Plastic Zone: Dislocation Activity 329 14.6.1 Face-centered Cubic Metals 329 14.6.2 Body-centered Cubic Metals 330 14.6.3 Quantification of Dislocation Length and Density 331 14.6.4 Pile-up 333 14.6.5 Geometrically-necessary Dislocations and the Identification of Intrinsic Length-scales from Hardness Simulations 334 14.7 Outlook 336 Acknowledgements 337 References 337 15 Continuum Modelling and Simulation of Indentation in Transparent Single Crystalline Minerals and Energetic Solids 347 J.D. Clayton, B.B. Aydelotte, R. Becker, C.D. Hilton and J. Knap 15.1 Introduction 347 15.2 Theory: MaterialModelling 349 15.2.1 General Multi-field Continuum Theory 349 15.2.2 Crystal Plasticity Theory 350 15.2.3 Phase FieldTheory for Twinning 351 15.3 Application: Indentation of RDX Single Crystals 352 15.3.1 Review of PriorWork 353 15.3.2 New Results and Analysis 354 15.4 Application: Indentation of Calcite Single Crystals 356 15.4.1 Review of PriorWork 359 15.4.2 New Results and Analysis 361 15.5 Conclusions 364 Acknowledgements 365 References 365 16 NanoindentationModeling: From Finite Element to Atomistic Simulations 369 Daniel Esque- de los Ojos and Jordi Sort 16.1 Introduction 369 16.2 Scaling and Dimensional Analysis Applied to IndentationModelling 370 16.2.1 Geometrical Similarity of Indenter Tips 370 16.2.2 Dimensional Analysis 371 16.2.3 Dimensional Analysis Applied to Extraction of Mechanical Properties 372 16.3 Finite Element Simulations of Advanced Materials 374 16.3.1 Nanocrystalline Porous Materials and Pressure-sensitive Models 375 16.3.2 Finite Element Simulations of 1D Structures: Nanowires 378 16.3.3 Continuum Crystal Plasticity Finite Element Simulations: Nanoindentation of Thin Solid Films 380 16.4 Nucleation and Interaction of Dislocations During Single Crystal Nanoindentaion: Atomistic Simulations 383 16.4.1 Dislocation Dynamics Simulations 383 16.4.2 Molecular Dynamics Simulations 385 References 386 17 Nanoindentation in silico of Biological Particles 393 Olga Kononova, Kenneth A. Marx and Valeri Barsegov 17.1 Introduction 393 17.2 ComputationalMethodology of Nanoindentation in silico 395 17.2.1 Molecular Modelling of Biological Particles 395 17.2.2 Coarse-graining: Self-organized Polymer (SOP) Model 396 17.2.3 MultiscaleModeling Primer: SOP Model Parameterization for Microtubule Polymers 398 17.2.4 Using Graphics Processing Units as Performance Accelerators 399 17.2.5 Virtual AFM Experiment: Forced Indentation in silico of Biological Particles 401 17.3 Biological Particles 403 17.3.1 Cylindrical Particles: Microtubule Polymers 403 17.3.2 Spherical Particles: CCMV Shell 404 17.4 Nanoindentation in silico: Probing Reversible Changes in Near-equilibrium Regime 406 17.4.1 Probing Reversible Transitions 406 17.4.2 Studying Near-equilibrium Dynamics 407 17.5 Application of in silico Nanoindentation: Dynamics of Deformation of MT and CCMV 409 17.5.1 Long Polyprotein - Microtubule Protofilament 409 17.5.2 Cylindrical Particle - Microtubule Polymer 411 17.5.3 Spherical Particle - CCMV Protein Shell 416 17.6 Concluding Remarks 421 References 424 18 Modeling and Simulations in Nanoindentation 429 Yi Sun and Fanlin Zeng 18.1 Introduction 429 18.2 Simulations of Nanoindention on Polymers 430 18.2.1 Models and Simulation Methods 430 18.2.2 Load-displacement Responses 431 18.2.3 Hardness and Young's Modulus 433 18.2.4 The Mechanism of Mechanical Behaviours and Properties 437 18.3 Simulations of Nanoindention on Crystals 441 18.3.1 Models and Simulation Methods 442 18.3.2 The Load-displacement Responses 444 18.3.3 Dislocation Nucleation 446 18.3.4 Mechanism of Dislocation Emission 449 18.4 Conclusions 455 Acknowledgments 456 References 456 19 Nanoindentation of Advanced Ceramics: Applications to ZrO2 Materials 459 Joan Josep Roa Rovira, Emilio Jimenez Pique andMarc J. Anglada Gomila 19.1 Introduction 459 19.2 IndentationMechanics 460 19.2.1 Deformation Mechanics 460 19.2.2 Elastic Contact 461 19.2.3 Elasto/plastic Contact 462 19.3 Fracture Toughness 462 19.4 Coatings 463 19.4.1 Coating Hardness 463 19.4.2 Coating Elastic Modulus 464 19.5 Issues for Reproducible Results 464 19.6 Applications of Nanoindentation to Zirconia 465 19.6.1 Hardness and Elastic Modulus 466 19.6.2 Stress-strain Curve and Phase Transformation 467 19.6.3 Plastic Deformation Mechanisms 468 19.6.4 Mechanical Properties of Damaged Surfaces 468 19.6.5 Relation Between Microstructure and Local Mechanical Properties by Massive Nanoindentation Cartography 471 19.7 Conclusions 472 Acknowledgements 472 References 473 20 FEM Simulation of Nanoindentation 481 F. Poehl, W. Theisen and S. Huth 20.1 Introduction 481 20.2 Indentation of Isotropic Materials 482 20.3 Indentation of Thin Films 489 20.4 Indentation of a Hard Phase Embedded in Matrix 490 References 495 21 Investigations Regarding Plastic Flow Behaviour and Failure Analysis on CrAlN Thin Hard Coatings 501 Jan Perne 21.1 Introduction 501 21.2 Description of the Method 501 21.2.1 Flow Curve Determination 502 21.2.1.1 Nanoindentation Step 502 21.2.1.2 Yield Strength Determination 502 21.2.1.3 Flow Curve Determination by Iterative Simulation 503 21.2.1.4 Determination of Strain Rate and Temperature Dependency 503 21.2.2 Failure Criterion Determination with Nano-scratch Analysis 503 21.3 Investigations into the CrAlN Coating System 504 21.3.1 Flow curve dependency on chemical composition and microstructure 504 21.3.2 Strain Rate Dependency of Different CrN-AlN Coating Systems 506 21.3.3 Failure criterion determination on a CrN/AlN nanolaminate 507 21.4 Concluding Remarks 509 References 511 22 Scale Invariant Mechanical Surface Optimization 513 Norbert Schwarzer 22.1 Introduction 513 22.1.1 Interatomic Potential Description of Mechanical Material Behavior 513 22.1.2 The Effective Indenter Concept and Its Extension to Layered Materials 514 22.1.3 About Extensions of the Oliver and Pharr Method 514 22.1.3.1 Making the Classical Oliver and Pharr Method Fit for Time Dependent Mechanical Behavior 515 22.1.4 Introduction to the Physical Scratch and/or Tribological Test and its Analysis 515 22.1.5 Illustrative Hypothetical Example for Optimization Against Dust Impact 515 22.1.6 About the Influence of Intrinsic Stresses 516 22.2 Theory 517 22.2.1 First Principle Based Interatomic Potential Description of Mechanical Material Behavior 517 22.2.2 The Effective Indenter Concept 521 22.2.3 An Oliver and Pharr Method for Time Dependent Layered Materials 522 22.2.4 Theory for the Physical Scratch and/or Tribological Test 533 22.2.5 From Quasi-Static Experiments and Parameters to DynamicWear, Fretting and Tribological Tests 534 22.2.6 Including Biaxial Intrinsic Stresses 537 22.3 The Procedure 540 22.4 Discussion by Means of Examples 544 22.5 Conclusions 555 Acknowledgements 555 Referencess 556 23 Modelling and Simulations of Nanoindentation in Single Crystals 561 Qiang Liu,Murat Demiral, Anish Roy and Vadim V. Silberschmidt 23.1 Introduction 561 23.2 Review of IndentationModelling 564 23.3 Crystal PlasticityModelling of Nanoindentation 565 23.3.1 Indentation of F.C.C. Copper Single Crystal 567 23.3.2 Indentation of B.C.C. Ti-64 569 23.3.3 Indentation of B.C.C. Ti-15-3-3 571 23.4 Conclusions 573 References 574 24 Computer Simulation and Experimental Analysis of Nanoindentation Technique 579 A. Karimzadeh,M.R. Ayatollahi and A. Rahimi 24.1 Introduction 579 24.2 Finite Element Simulation for Nanoindentation 580 24.3 Finite Element Modeling 580 24.3.1 Geometry 580 24.3.2 Material Characteristics 581 24.3.3 Boundary Condition 582 24.3.4 Interaction 582 24.3.5 Meshing 582 24.4 Verification of Finite Element Simulation 583 24.4.1 Nanoindentation Experiment on Al 1100 584 24.4.2 Comparison Between Simulation and Experimental Results for Al 1100 584 24.4.2.1 Load-displacement 584 24.4.2.2 Hardness 588 24.5 Molecular Dynamic Modeling for Nanoindentation 591 24.5.1 Simulation Procedure 592 24.6 Results of Molecular Dynamic Simulation 595 24.7 Conclusions 597 References 597 25 Atomistic Simulations of Adhesion, Indentation andWear at Nanoscale 601 Jun Zhong, Donald J. Siegel, Louis G. Hector, Jr. and James B. Adams 25.1 Introduction 601 25.2 Methodologies 604 25.2.1 Density FunctionalTheory 604 25.2.1.1 The Exchange-correlation Functional 605 25.2.1.2 PlaneWaves and Supercell 606 25.2.2 Pseudopotential Approximation 606 25.2.3 Molecular Dynamics 607 25.2.3.1 Equations of Motion 607 25.2.3.2 Algorithms 608 25.2.3.3 Statistical Ensembles 608 25.2.3.4 Interatomic Potentials 608 25.2.3.5 Ab initio Molecular Dynamics 609 25.2.4 Some Commercial Software 611 25.2.4.1 The VASP 611 25.2.4.2 The LAMMPS 611 25.3 Density Functional Study of Adhesion at the Metal/Ceramic Interfaces 612 25.3.1 Calculations 612 25.3.2 Effect of Surface Energies in theWsep 614 25.3.3 Conclusions 615 25.4 Molecular Dynamics Simulations of Nanoindentation 616 25.4.1 Empirical Modeling 616 25.4.1.1 Modeling Geometry and Simulation Procedures 617 25.4.1.2 Results and discussions 618 25.4.1.3 Conclusions 622 25.4.2 Ab initio Modeling 622 25.4.2.1 Modeling Geometry and Simulation Procedures 622 25.4.2.2 Results and Discussions 624 25.5 Molecular Dynamics Simulations of AdhesiveWear on the Al-substrate 628 25.5.1 Modeling Geometry and Simulation Procedures 629 25.5.2 Results and Discussions 630 25.5.2.1 One CommonWear Sequence 630 25.5.2.2 Thermal Analysis for theWear Sequence 631 25.5.2.3 Wear Rate Analyses 632 25.6 Summary and Prospect 636 Acknowledgments 638 References 638 26 Multiscale Model for Nanoindentation in Polymer and Polymer Nanocomposites 647 Rezwanur Rahman 26.1 Introduction 647 26.2 Modeling Scheme 648 26.2.1 Details of the MD Simulation 649 26.3 Nanoindentation Test 650 26.4 Theoretically and Experimentally Determined Result 651 26.5 Multiscale of Complex Heterogeneous Materials 651 26.5.1 Introduction to Peridynamics 652 26.5.2 Nonlocal Multiscale Modeling using Peridynamics: Linking Macro- to Nano-scales 654 26.6 MultiscaleModeling for Nanoindentation in Epoxy: EPON 862 655 26.7 UnifiedTheory for MultiscaleModeling 658 26.8 Conclusion 658 References 659 Index 663

「Nielsen BookData」 より

詳細情報

ページトップへ