Classical Fourier analysis
Author(s)
Bibliographic Information
Classical Fourier analysis
(Graduate texts in mathematics, 249)
Springer Science+Business Media, c2014
3rd ed
- : softcover
Available at / 4 libraries
-
No Libraries matched.
- Remove all filters.
Note
"Originally publisehd by Springer, New York, Inc in 2014. Softcover reprint of the hardcover 3rd edition 2014"--T.p. verso
Includes bibliographical references (p. 617-631) and index
Description and Table of Contents
Description
The main goal of this text is to present the theoretical foundation of the field of Fourier analysis on Euclidean spaces. It covers classical topics such as interpolation, Fourier series, the Fourier transform, maximal functions, singular integrals, and Littlewood-Paley theory. The primary readership is intended to be graduate students in mathematics with the prerequisite including satisfactory completion of courses in real and complex variables. The coverage of topics and exposition style are designed to leave no gaps in understanding and stimulate further study.
This third edition includes new Sections 3.5, 4.4, 4.5 as well as a new chapter on "Weighted Inequalities," which has been moved from GTM 250, 2nd Edition. Appendices I and B.9 are also new to this edition. Countless corrections and improvements have been made to the material from the second edition. Additions and improvements include: more examples and applications, new and more relevant hints for the existing exercises, new exercises, and improved references.
Table of Contents
Preface.- 1. Lp Spaces and Interpolation.- 2. Maximal Functions, Fourier Transform, and Distributions.- 3. Fourier Series.- 4. Topics on Fourier Series.- 5. Singular Integrals of Convolution Type.- 6. Littlewood-Paley Theory and Multipliers.- 7. Weighted Inequalities.- A. Gamma and Beta Functions.- B. Bessel Functions.- C. Rademacher Functions.- D. Spherical Coordinates.- E. Some Trigonometric Identities and Inequalities.- F. Summation by Parts.- G. Basic Functional Analysis.- H. The Minimax Lemma.- I. Taylor's and Mean Value Theorem in Several Variables.- J. The Whitney Decomposition of Open Sets in Rn.- Glossary.- References.- Index.
by "Nielsen BookData"