Hybrid nanomaterials : advances in energy, environment and polymer nanocomposites
著者
書誌事項
Hybrid nanomaterials : advances in energy, environment and polymer nanocomposites
Wiley , Scrivener Publishing, c2017
大学図書館所蔵 全1件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
The book highlights applications of hybrid materials in solar energy systems, lithium ion batteries, electromagnetic shielding, sensing of pollutants and water purification.
A hybrid material is defined as a material composed of an intimate mixture of inorganic components, organic components, or both types of components. In the last few years, a tremendous amount of attention has been given towards the development of materials for efficient energy harvesting; nanostructured hybrid materials have also been gaining significant advances to provide pollutant free drinking water, sensing of environmental pollutants, energy storage and conservation. Separately, intensive work on high performing polymer nanocomposites for applications in the automotive, aerospace and construction industries has been carried out, but the aggregation of many fillers, such as clay, LDH, CNT, graphene, represented a major barrier in their development. Only very recently has this problem been overcome by fabrication and applications of 3D hybrid nanomaterials as nanofillers in a variety of polymers.
This book, Hybrid Nanomaterials, examines all the recent developments in the research and specially covers the following subjects:
3D hybrid nanomaterials nanofillers
Hybrid nanostructured materials for development of advanced lithium batteries
High performing hybrid nanomaterials for supercapacitor applications
Nano-hybrid materials in the development of solar energy applications
Application of hybrid nanomaterials in water purification
Advanced nanostructured materials in electromagnetic shielding of radiations
Preparation, properties and application of hybrid nanomaterials in sensing of environmental pollutants
Development of hybrid fillers/polymer nanocomposites for electronic applications
High performance hybrid filler reinforced epoxy nanocomposites
State-of-the-art overview of elastomer/hybrid filler nanocomposites
目次
Preface xiii
1 Hybrid Nanostructured Materials for Advanced Lithium Batteries 1
Soumyadip Choudhury and Manfred Stamm
1.1 Introduction 1
1.2 Battery Requirements 4
1.3 Survey of Rechargeable Batteries 7
1.4 Advanced Materials for Electrodes 9
1.5 Future Battery Strategies 38
1.6 Limitations of Existing Strategies 59
1.7 Conclusions 62
Acknowledgments 63
References 63
2 High Performing Hybrid Nanomaterials for Supercapacitor Applications 79
Sanjit Saha, Milan Jana and Tapas Kuila
2.1 Introduction 80
2.2 Scope of the Chapter 82
2.3 Characterization of Hybrid Nanomaterials 82
2.4 Hybrid Nanomaterials as Electrodes for Supercapacitor 91
2.5 Applications of Supercapacitor 130
2.6 Conclusions 134
References 135
3 Nanohybrid Materials in the Development of Solar Energy Applications 147
Poulomi Roy
3.1 Introduction 147
3.2 Significance of Nanohybrid Materials 148
3.3 Synthetic Strategies 162
3.4 Application in Solar Energy Conversion 167
3.5 Summary 175
References 176
4 Hybrid Nanoadsorbents for Drinking Water Treatment: A Critical Review 199
Ashok K. Gupta, Partha S. Ghosal and Brajesh K. Dubey
4.1 Introduction 199
4.2 Status and Health Effects of Different Pollutants 201
4.3 Removal Technologies 203
4.4 Hybrid Nanoadsorbent 208
4.5 Issues and Challenges 217
4.6 Conclusions 224
References 225
5 Advanced Nanostructured Materials in Electromagnetic Interference Shielding 241
Suneel Kumar Srivastava and Vikas Mittal
5.1 Introduction 241
5.2 Theoretical Aspect of EMI Shielding 243
5.3 Experimental Methods in Measuring Shielding Effectiveness 247
5.4 Carbon Allotrope-Based Polymer Nanocomposites 248
Fillers-Based Polymer Nanocomposites 265
5.5 Intrinsically Conducting Polymer (ICP) Derived Nanocomposites 276
5.6 Summary 300
6 Preparation, Properties and the Application of Hybrid Nanomaterials in Sensing Environmental Pollutants 321
R. Ajay Rakkesh, D. Durgalakshmi and S. Balakumar
6.1 Introduction 321
6.2 Hybrid Nanomaterials: Smart Material for Sensing Environmental Pollutants 323
6.3 Synthesis Methods of Hybrid Nanomaterials 326
6.4 Basic Mechanism of Gas Sensors Using Hybrid Nanomaterials 330
6.5 Hybrid Nanomaterials-Based Conductometric Gas Sensors for Environmental Monitoring 331
6.6 Conclusion 342
References 342
7 Development of Hybrid Fillers/Polymer Nanocomposites for Electronic Applications 349
Mariatti Jaafar
7.1 Introduction 350
7.2 Factors Influencing the Properties of Filler/Polymer Composite 353
7.3 Hybridization of Fillers in Polymer Composites 355
7.4 Hybrid Fillers in Polymer Nanocomposites 358
7.5 Fabrication Methods of Hybrid Fillers/Polymer Composites 362
7.6 Applications of Hybrid Fillers/Polymer Composites 365
References 366
8 High Performance Hybrid Filler Reinforced Epoxy Nanocomposites 371
Suman Chhetri, Tapas Kuila and Suneel Kumar Srivastava
8.1 Introduction 372
8.2 Reinforcing Fillers 373
8.3 Necessity of Hybrid Filler Systems 376
8.4 Epoxy Resin 379
8.5 Preparation of Hybrid Filler/Epoxy Nanocomposites 380
8.6 Characterization of Hybrid Filler/Epoxy Polymer Composites 381
8.7 Properties of the Hybrid Filler/Epoxy Nanocomposites 383
8.8 Summary and Future Prospect 408
References 413
9 Recent Developments in Elastomer/Hybrid Filler Nanocomposites 423
Suneel Kumar Srivastava and Vikas Mittal
9.1 Introduction 423
9.2 Preparation Methods of Elastomer Nanocomposites 426
9.3 Hybrid Fillers in Elastomer Nanocomposites 427 9.4 Mechanical Properties of Hybrid Filler Incorporated Elastomer Nanocomposites 440
9.5 Dynamical Mechanical Thermal Analysis (DMA) of Elastomer Nanocomposites 452
9.6 Thermogravimetric Analysis (TGA) of Hybrid Filler Incorporated Elastomer Nanocomposites 464
9.7 Differential Scanning Calorimetric (DSC) Analysis of Hybrid Filler Incorporated Elastomer Nanocomposites 468
9.8 Electrical Conductivity of Hybrid Filler Incorporated Elastomer Nanocomposites 476
9.9 Thermal Conductivity of Hybrid Filler Incorporated Elastomer Nanocomposites 477
9.10 Dielectric Properties of Hybrid Filler Incorporated Elastomer Nanocomposits 477
9.11 Shape Memory Property of Hybrid Filler Incorporated Elastomer Nanocomposites 478
9.12 Summary 478
Acknowledgment 479
References 479
「Nielsen BookData」 より