A course in item response theory and modeling with Stata
著者
書誌事項
A course in item response theory and modeling with Stata
Stata Press, 2018
大学図書館所蔵 全11件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. [255]-261) and indexes
内容説明・目次
内容説明
Over the past several decades, item response theory (IRT) and item response modeling (IRM) have become increasingly popular in the behavioral, educational, social, business, marketing, clinical, and health sciences. In this book, Raykov and Marcoulides begin with a nontraditional approach to IRT and IRM that is based on their connections to classical test theory, (nonlinear) factor analysis, generalized linear modeling, and logistic regression. Application-oriented discussions follow next. These cover the one-, two-, and three-parameter logistic models, polytomous item response models (with nominal or ordinal items), item and test information functions, instrument construction and development, hybrid models, differential item functioning, and an introduction to multidimensional
IRT and IRM. The pertinent analytic and modeling capabilities of Stata are thoroughly discussed, highlighted, and illustrated on empirical examples from behavioral and social research.
目次
Notation and typography. What is item response theory and item response modeling? Two basic functions for item response theory and item response. Classical test theory, factor analysis, and their connections to item response theory Generalized linear modeling, logistic regression, nonlinear factor analysis, and their links to item response theory and item response modeling. Fundamentals of item response theory and item response modeling. First applications of Stata for item response modeling. Item response theory model fitting and estimation. Information functions and test characteristic curves Instrument construction and development using information functions. Differential item functioning. Polytomous item response models and hybrid models. Introduction to multidimensional item response theory and modeling
「Nielsen BookData」 より