An introduction to analysis
著者
書誌事項
An introduction to analysis
Princeton University Press, c2018
大学図書館所蔵 全6件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes indexes
内容説明・目次
内容説明
An essential undergraduate textbook on algebra, topology, and calculus
An Introduction to Analysis is an essential primer on basic results in algebra, topology, and calculus for undergraduate students considering advanced degrees in mathematics. Ideal for use in a one-year course, this unique textbook also introduces students to rigorous proofs and formal mathematical writing--skills they need to excel.
With a range of problems throughout, An Introduction to Analysis treats n-dimensional calculus from the beginning-differentiation, the Riemann integral, series, and differential forms and Stokes's theorem-enabling students who are serious about mathematics to progress quickly to more challenging topics. The book discusses basic material on point set topology, such as normed and metric spaces, topological spaces, compact sets, and the Baire category theorem. It covers linear algebra as well, including vector spaces, linear mappings, Jordan normal form, bilinear mappings, and normal mappings.
Proven in the classroom, An Introduction to Analysis is the first textbook to bring these topics together in one easy-to-use and comprehensive volume.
Provides a rigorous introduction to calculus in one and several variables
Introduces students to basic topology
Covers topics in linear algebra, including matrices, determinants, Jordan normal form, and bilinear and normal mappings
Discusses differential forms and Stokes's theorem in n dimensions
Also covers the Riemann integral, integrability, improper integrals, and series expansions
「Nielsen BookData」 より