Analysis of variance, design, and regression : linear modeling for unbalanced data
著者
書誌事項
Analysis of variance, design, and regression : linear modeling for unbalanced data
(Texts in statistical science)
CRC Press, Taylor & Francis Group, c2016
2nd ed
- : hardback
大学図書館所蔵 件 / 全1件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references (p. 599-603) and index
内容説明・目次
内容説明
Analysis of Variance, Design, and Regression: Linear Modeling for Unbalanced Data, Second Edition presents linear structures for modeling data with an emphasis on how to incorporate specific ideas (hypotheses) about the structure of the data into a linear model for the data. The book carefully analyzes small data sets by using tools that are easily scaled to big data. The tools also apply to small relevant data sets that are extracted from big data.
New to the Second Edition
Reorganized to focus on unbalanced data
Reworked balanced analyses using methods for unbalanced data
Introductions to nonparametric and lasso regression
Introductions to general additive and generalized additive models
Examination of homologous factors
Unbalanced split plot analyses
Extensions to generalized linear models
R, Minitab (R), and SAS code on the author's website
The text can be used in a variety of courses, including a yearlong graduate course on regression and ANOVA or a data analysis course for upper-division statistics students and graduate students from other fields. It places a strong emphasis on interpreting the range of computer output encountered when dealing with unbalanced data.
目次
Introduction. One Sample. General Statistical Inference. Two Samples. Contingency Tables. Simple Linear Regression. Model Checking. Lack of Fit and Nonparametric Regression. Multiple Regression: Introduction. Diagnostics and Variable Selection. Multiple Regression: Matrix Formulation. One-Way ANOVA. Multiple Comparison Methods. Two-Way ANOVA. ACOVA and Interactions. Multifactor Structures. Basic Experimental Designs. Factorial Treatments. Dependent Data. Logistic Regression: Predicting Counts. Log-Linear Models: Describing Count Data. Exponential and Gamma Regression: Time-to-Event Data. Nonlinear Regression. Appendices.
「Nielsen BookData」 より