Combining interval, probabilistic, and other types of uncertainty in engineering applications

著者

書誌事項

Combining interval, probabilistic, and other types of uncertainty in engineering applications

Andrew Pownuk, Vladik Kreinovich

(Studies in computational intelligence, 773)

Springer, c2018

大学図書館所蔵 件 / 1

この図書・雑誌をさがす

注記

Includes bibliographical references and index

内容説明・目次

内容説明

How can we solve engineering problems while taking into account data characterized by different types of measurement and estimation uncertainty: interval, probabilistic, fuzzy, etc.? This book provides a theoretical basis for arriving at such solutions, as well as case studies demonstrating how these theoretical ideas can be translated into practical applications in the geosciences, pavement engineering, etc. In all these developments, the authors' objectives were to provide accurate estimates of the resulting uncertainty; to offer solutions that require reasonably short computation times; to offer content that is accessible for engineers; and to be sufficiently general - so that readers can use the book for many different problems. The authors also describe how to make decisions under different types of uncertainty. The book offers a valuable resource for all practical engineers interested in better ways of gauging uncertainty, for students eager to learn and apply the new techniques, and for researchers interested in processing heterogeneous uncertainty.

目次

Introduction.- How to Get More Accurate Estimates.- How to Speed Up Computations.- Towards a Better Understandability of Uncertainty-Estimating Algorithms.- How General Can We Go: What Is Computable and What Is Not.- Decision Making Under Uncertainty.- Conclusions.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BB26521633
  • ISBN
    • 9783319910253
  • LCCN
    2018940421
  • 出版国コード
    sz
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Cham
  • ページ数/冊数
    xi, 202 p.
  • 大きさ
    25 cm
  • 分類
  • 親書誌ID
ページトップへ