Integrated analysis and causal inference
著者
書誌事項
Integrated analysis and causal inference
(Chapman and Hall/CRC mathematical & computational biology series / series editors Alison M. Etheridge ... [et al.], . Big data in omics and imaging)(A Chapman & Hall book)
CRC Press, c2018
- : hbk
大学図書館所蔵 全3件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 697-710) and index
内容説明・目次
内容説明
Big Data in Omics and Imaging: Integrated Analysis and Causal Inference addresses the recent development of integrated genomic, epigenomic and imaging data analysis and causal inference in big data era. Despite significant progress in dissecting the genetic architecture of complex diseases by genome-wide association studies (GWAS), genome-wide expression studies (GWES), and epigenome-wide association studies (EWAS), the overall contribution of the new identified genetic variants is small and a large fraction of genetic variants is still hidden. Understanding the etiology and causal chain of mechanism underlying complex diseases remains elusive. It is time to bring big data, machine learning and causal revolution to developing a new generation of genetic analysis for shifting the current paradigm of genetic analysis from shallow association analysis to deep causal inference and from genetic analysis alone to integrated omics and imaging data analysis for unraveling the mechanism of complex diseases.
FEATURES
Provides a natural extension and companion volume to Big Data in Omic and Imaging: Association Analysis, but can be read independently.
Introduce causal inference theory to genomic, epigenomic and imaging data analysis
Develop novel statistics for genome-wide causation studies and epigenome-wide causation studies.
Bridge the gap between the traditional association analysis and modern causation analysis
Use combinatorial optimization methods and various causal models as a general framework for inferring multilevel omic and image causal networks
Present statistical methods and computational algorithms for searching causal paths from genetic variant to disease
Develop causal machine learning methods integrating causal inference and machine learning
Develop statistics for testing significant difference in directed edge, path, and graphs, and for assessing causal relationships between two networks
The book is designed for graduate students and researchers in genomics, epigenomics, medical image, bioinformatics, and data science. Topics covered are: mathematical formulation of causal inference, information geometry for causal inference, topology group and Haar measure, additive noise models, distance correlation, multivariate causal inference and causal networks, dynamic causal networks, multivariate and functional structural equation models, mixed structural equation models, causal inference with confounders, integer programming, deep learning and differential equations for wearable computing, genetic analysis of function-valued traits, RNA-seq data analysis, causal networks for genetic methylation analysis, gene expression and methylation deconvolution, cell -specific causal networks, deep learning for image segmentation and image analysis, imaging and genomic data analysis, integrated multilevel causal genomic, epigenomic and imaging data analysis.
目次
Preface
Author
1. Genotype-Phenotype Network Analysis
2. Causal Analysis and Network Biology
3. Wearable Computing and Genetic Analysis of Function-Valued Traits
4. RNA-Seq Data Analysis
5. Methylation Data Analysis
6. Imaging and Genomics
7. From Association Analysis to Integrated Causal Inference
References
Index
「Nielsen BookData」 より