Causal analytics for applied risk analysis
著者
書誌事項
Causal analytics for applied risk analysis
(International series in operations research & management science, v. 270)
Springer, c2018
大学図書館所蔵 全5件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
Causal analytics methods can revolutionize the use of data to make effective decisions by revealing how different choices affect probabilities of various outcomes. This book presents and illustrates models, algorithms, principles, and software for deriving causal models from data and for using them to optimize decisions with uncertain outcomes. It discusses how to describe and summarize situations; detect changes; evaluate effects of policies or interventions; learn what works best under different conditions; predict values of as-yet unobserved quantities from available data; and identify the most likely explanations for observed outcomes, including surprises and anomalies. The book resents practical techniques for causal modeling and analytics that practitioners can apply to improve understanding of how choices affect probabilities of consequences and, based on this understanding, to recommend choices that are more likely to accomplish their intended objectives.The book begins with a survey of modern analytics methods, focusing mainly on techniques useful for decision, risk, and policy analysis. Chapter 2 introduces free in-browser software, including the Causal Analytics Toolkit (CAT) software, to enable readers to perform the analyses described and to apply modern analytics methods easily to their own data sets. Chapters 3 through 11 show how to apply causal analytics and risk analytics to practical risk analysis challenges, mainly related to public and occupational health risks from pathogens in food or from pollutants in air. Chapters 12 through 15 turn to broader questions of how to improve risk management decision-making by individuals, groups, organizations, institutions, and multi-generation societies with different cultures and norms for cooperation. These chapters examine organizational learning, community resilience, societal risk management, and intergenerational collaboration and justice in managing risks.
目次
Part 1. Concepts and Methods of Causal Analytics.- Chapter 1. Causal Analytics and Risk Analytics.- Chapter 2. Causal Concepts, Principles, and Algorithms.- Part 2. Descriptive Analytics in Public and Occupational Health.- Chapter 3. Descriptive Analytics for Public Health: Socioeconomic and Air Pollution Correlates of Adult Asthma, Heart Attack, and Stroke Risks.- Chapter 4. Descriptive Analytics for Occupational Health: Is Benzene Metabolism in Exposed Workers More Efficient at Very Low Concentrations?- Chapter 5. How Large are Human Health Risks Caused by Antibiotics Used in Food Animals?- Chapter 6. Quantitative Risk Assessment of Human Risks of Methicillin-Resistant Staphylococcus aureus (MRSA) Caused by Swine Operations Part 3. Predictive and Causal Analytics.- Chapter 7. Attributive Causal Modeling: Quantifying Human Health Risks Caused by Toxoplasmosis From Open System Production Of Swine.- Chapter 8. How Well Can High-Throughput Screening Test Results Predict Whether Chemicals Cause Cancer in Mice and Rats?- Chapter 9. Mechanistic Causality: Biological Mechanisms of Dose-Response Thresholds for Inflammation-Mediated Diseases Caused by Asbestos Fibers and Mineral Particles.- Part 4. Evaluation Analytics.- Chapter 10. Evaluation Analytics for Public Health: Has Reducing Air Pollution Reduced Mortality in the United States?- Chapter 11. Evaluation Analytics for Occupational health: How accurately and consistently do laboratories measure workplace concentrations of respirable crystalline silica?- Part 5. Risk Management: Insights from Prescriptive, Learning, and Collaborative Analytics.- Chapter 12. Improving individual, group and organizational decisions: Overcoming learning aversion in evaluating and managing uncertain risks.- Chapter 13. Improving organizational risk management: From Lame Excuses to Principled Practice.- Chapter 14. Improving institutions of risk management: Uncertain causality and judicial review of regulations.- Chapter 15. Intergenerational justice in protective and resilience investments with uncertain future preferences and resources.
「Nielsen BookData」 より