Intuitionistic proof versus classical truth : the role of Brouwer's creative subject in intuitionistic mathematics

著者

    • Martino, Enrico

書誌事項

Intuitionistic proof versus classical truth : the role of Brouwer's creative subject in intuitionistic mathematics

Enrico Martino

(Logic, epistemology, and the unity of science / editors, Shahid Rahman, John Symons, v. 42)

Springer, c2018

大学図書館所蔵 件 / 3

この図書・雑誌をさがす

内容説明・目次

内容説明

This book examines the role of acts of choice in classical and intuitionistic mathematics. Featuring fifteen papers - both new and previously published - it offers a fresh analysis of concepts developed by the mathematician and philosopher L.E.J. Brouwer, the founder of intuitionism. The author explores Brouwer's idealization of the creative subject as the basis for intuitionistic truth, and in the process he also discusses an important, related question: to what extent does the intuitionistic perspective succeed in avoiding the classical realistic notion of truth? The papers detail realistic aspects in the idealization of the creative subject and investigate the hidden role of choice even in classical logic and mathematics, covering such topics as bar theorem, type theory, inductive evidence, Beth models, fallible models, and more. In addition, the author offers a critical analysis of the response of key mathematicians and philosophers to Brouwer's work. These figures include Michael Dummett, Saul Kripke, Per Martin-Loef, and Arend Heyting. This book appeals to researchers and graduate students with an interest in philosophy of mathematics, linguistics, and mathematics.

目次

Brouwer, Dummett and the bar theorem.- Creative subject and bar theorem.- Natural intuitionistic semantics and generalized Beth semantics.- Connection between the principle of inductive evidence and the bar theorem.- On the Brouwerian concept of negative continuity.- Classical and intuitionistic semantical groundedness.- Brouwer's equivalence between virtual and inextensible order.- An intuitionistic notion of hypothetical truth for which strong completeness intuitionistically holds.- Propositions and judgements in Martin-Loef.- Negationless Intuitionism.- Temporal and atemporal truth in intuitionistic mathematics.- Arbitrary reference in mathematical reasoning.- The priority of arithmetical truth over arithmetical provability.- The impredicativity of the intuitionistic meaning of logical constants.- The intuitionistic meaning of logical constants and fallible models.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BB26595185
  • ISBN
    • 9783319743561
  • 出版国コード
    sz
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Cham
  • ページ数/冊数
    xiii, 170 p.
  • 大きさ
    25 cm
  • 親書誌ID
ページトップへ