Data analysis for omic sciences : methods and applications
著者
書誌事項
Data analysis for omic sciences : methods and applications
(Comprehensive analytical chemistry, v. 82)
Elsevier, c2018
大学図書館所蔵 全5件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
Data Analysis for Omic Sciences: Methods and Applications, Volume 82, shows how these types of challenging datasets can be analyzed. Examples of applications in real environmental, clinical and food analysis cases help readers disseminate these approaches. Chapters of note include an Introduction to Data Analysis Relevance in the Omics Era, Omics Experimental Design and Data Acquisition, Microarrays Data, Analysis of High-Throughput RNA Sequencing Data, Analysis of High-Throughput DNA Bisulfite Sequencing Data, Data Quality Assessment in Untargeted LC-MS Metabolomic, Data Normalization and Scaling, Metabolomics Data Preprocessing, and more.
目次
Volume Editor PrefaceRoma Tauler, Carmen Bedia and Joaquim Jaumot1. Introduction to the data analysis relevance in the omics eraRoma Tauler, Carmen Bedia and Joaquim Jaumot2. Omics experimental design and data acquisitionCarmen Bedia 3. Microarrays data analysisAlex Sanchez-Pla 4. Analysis of High-Throughput RNA Sequencing DataAnna Esteve-Codina5. Analysis of High-Throughput DNA Bisulfite Sequencing DataSimon Charles Heath 6. Data quality assessment in untargeted LC-MS metabolomicJulia Kuligowski, Guillermo Quintas, Angel Sanchez-Illana and Jose David Pineiro-Ramos7. Data normalization and scaling: consequences for the analysis in omics sciencesJan Walach, Peter Filzmoser and Karel Hron 8. Metabolomics data preprocessing: From raw data to features for statistical analysisIbrahim Karaman and Rui Climaco Pinto 9. Exploratory data analysis and data decompositionsIvana Stanimirova and Michal Daszykowski 10. Chemometric methods for classification and feature selectionFederico Marini and Marina Cocchi11. Advanced statistical multivariate data analysisJasper Engel and Jeroen Jansen 12. Analysis and interpretation of mass spectrometry imaging datasetsBenjamin Bowen 13. Metabolomics tools for data analysisMatej Oresic, Alex Dickens, Tuulia Hyoetylainen, Santosh Lamichhane and Partho Sen14. Metabolite identification and annotationC. Barbas, Joanna Godzien and Alberto Gil de la Fuente 15. Multi-omic data integration and analysis via model-driven approachesIgor Marin de Mas 16. Integration of metabolomic data from multiple analytical platforms: Toward an extensive coverage of the metabolomeJulien Boccard and Serge Rudaz 17. Multiomics data integration in time series experimentsAna Conesa and Sonia Tarazona18. Metabolomics applications in environmental researchCarmen Bedia 19. Environmental genomicsCarlos Barata and Benjamin Pina 20. Transcriptomics and metabolomics systems biology of health and diseaseAntonio Checa, Jose Fernandez Navarro and Hector Gallart Ayala21. Foodomics applicationsAlejandro Cifuentes, Alberto Valdes and Carlos Leon
「Nielsen BookData」 より