Numerical optimization
著者
書誌事項
Numerical optimization
(Springer series in operations research)
Springer, c2006
2nd ed.
大学図書館所蔵 全5件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
Optimization is an important tool used in decision science and for the analysis of physical systems used in engineering. One can trace its roots to the Calculus of Variations and the work of Euler and Lagrange. This natural and reasonable approach to mathematical programming covers numerical methods for finite-dimensional optimization problems. It begins with very simple ideas progressing through more complicated concepts, concentrating on methods for both unconstrained and constrained optimization.
目次
Preface.-Preface to the Second Edition.-Introduction.-Fundamentals of Unconstrained Optimization.-Line Search Methods.-Trust-Region Methods.-Conjugate Gradient Methods.-Quasi-Newton Methods.-Large-Scale Unconstrained Optimization.-Calculating Derivatives.-Derivative-Free Optimization.-Least-Squares Problems.-Nonlinear Equations.-Theory of Constrained Optimization.-Linear Programming: The Simplex Method.-Linear Programming: Interior-Point Methods.-Fundamentals of Algorithms for Nonlinear Constrained Optimization.-Quadratic Programming.-Penalty and Augmented Lagrangian Methods.-Sequential Quadratic Programming.-Interior-Point Methods for Nonlinear Programming.-Background Material.- Regularization Procedure.
「Nielsen BookData」 より