Linear regression : a mathematical introduction
著者
書誌事項
Linear regression : a mathematical introduction
(Sage publications series, . Quantitative applications in the social sciences ; 177)
Sage, c2019
- : pbk
大学図書館所蔵 全18件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes index
内容説明・目次
内容説明
Damodar N. Gujarati's Linear Regression: A Mathematical Introduction presents linear regression theory in a rigorous, but approachable manner that is accessible to students in all social sciences. This concise title goes step-by-step through the intricacies, and theory and practice of regression analysis. The technical discussion is provided in a clear style that doesn't overwhelm the reader with abstract mathematics. End-of-chapter exercises test mastery of the content and advanced discussion of some of the topics is offered in the appendices.
目次
List of Figures
Series Editor's Introduction
Preface
About the Author
Acknowledgments
Chapter 1: The Linear Regression Model (LRM)
1.1 Introduction
1.2 Meaning of "Linear" in Linear Regression
1.3 Estimation of the LRM: An Algebraic Approach
1.4 Goodness of Fit of a Regression Model: The Coefficient of Determination (R2)
1.5 R2 for Regression Through the Origin
1.6 An Example: The Determination of the Hourly Wages in the United States
1.7 Summary
Exercises
Appendix 1A: Derivation of the Normal Equations
Chapter 2: The Classical Linear Regression Model (CLRM)
2.1 Assumptions of the CLRM
2.2 The Sampling or Probability Distributions of the OLS Estimators
2.3 Properties of OLS Estimators: The Gauss-Markov Theorem
2.4 Estimating Linear Functions of the OLS Parameters
2.5 Large-Sample Properties of OLS Estimators
2.6 Summary
Exercises
Chapter 3: The Classical Normal Linear Regression Model: The Method of Maximum Likelihood (ML)
3.1 Introduction
3.2 The Mechanics of ML
3.3 The Likelihood Function of the k-Variable Regression Model
3.4 Properties of the ML Method
3.5 Summary
Exercises
Appendix 3A: Asymptotic Efficiency of the ML Estimators of the LRM
Chapter 4: Linear Regression Model: Distribution Theory and Hypothesis Testing
4.1 Introduction
4.2 Types of Hypotheses
4.3 Procedure for Hypothesis Testing
4.4 The Determination of Hourly Wages in the United States
4.5 Testing Hypotheses About an Individual Regression Coefficient
4.6 Testing the Hypothesis That All the Regressors Collectively Have No Influence on the Regressand
4.7 Testing the Incremental Contribution of a Regressor
4.8 Confidence Interval for the Error Variance s 2
4.9 Large-Sample Tests of Hypotheses
4.10 Summary
Exercises
Appendix 4A: Constrained Least Squares: OLS Estimation Under Linear Restrictions
Chapter 5: Generalized Least Squares (GLS): Extensions of the Classical Linear Regression Model
5.1 Introduction
5.2 Estimation of B With a Nonscalar Covariance Matrix
5.3 Estimated Generalized Least Squares
5.4 Heteroscedasticity and Weighted Least Squares
5.5 White's Heteroscedasticity-Consistent Standard Errors
5.6 Autocorrelation
5.7 Summary
Exercises
Appendix 5A: ML Estimation of GLS
Chapter 6: Extensions of the Classical Linear Regression Model: The Case of Stochastic or Endogenous Regressors
6.1 Introduction
6.2 X and u Are Distributed Independently
6.3 X and u Are Contemporaneously Uncorrelated
6.4 X and u Are Neither Independently Distributed Nor Contemporaneously Uncorrelated
6.5 The Case of k Regressors
6.6 What Is the Solution? The Method of Instrumental Variables (IVs)
6.7 Hypothesis Testing Under IV Estimation
6.8 Practical Problems in the Application of the IV Method
6.9 Regression Involving More Than One Endogenous Regressor
6.10 An Illustrative Example: Earnings and Educational Attainment of Youth in the United States
6.11 Regression Involving More Than One Endogenous Regressor
6.12 Summary
Appendix 6A: Properties of OLS When Random X and u Are Independently Distributed
Appendix 6B: Properties of OLS Estimators When Random X and u Are Contemporaneously Uncorrelated
Chapter 7: Selected Topics in Linear Regression
7.1 Introduction
7.2 The Nature of Multicollinearity
7.3 Model Specification Errors
7.4 Qualitative or Dummy Regressors
7.5 Nonnormal Error Term
7.6 Summary
Exercises
Appendix 7A: Ridge Regression: A Solution to Perfect Collinearity
Appendix 7B: Specification Errors
Appendix A: Basics of Matrix Algebra
A.1 Definitions
A.2 Types of Matrices
A.3 Matrix Operations
A.4 Matrix Transposition
A.5 Matrix Inversion
A.6 Determinants
A.7 Rank of a Matrix
A.8 Finding the Inverse of a Square Matrix
A.9 Trace of a Square Matrix
A.10 Quadratic Forms and Definite Matrices
A.11 Eigenvalues and Eigenvectors
A.12 Vector and Matrix Differentiation
Appendix B: Essentials of Large-Sample Theory
B.1 Some Inequalities
B.2 Types of Convergence
B.3 The Order of Magnitude of a Sequence
B.4 The Order of Magnitude of a Stochastic Sequence
Appendix C: Small- and Large-Sample Properties of Estimators
C.1 Small-Sample Properties of Estimators
C.2 Large-Sample Properties of Estimators
Appendix D: Some Important Probability Distributions
D.1 The Normal Distribution and the Z Test
D.2 The Gamma Distribution
D.3 The Chi-Square (? 2) Distribution and the ? 2 Test
D.4 Student's t Distribution
D.5 Fisher's F Distribution
D.6 Relationships Among Probability Distributions
D.7 Uniform Distributions
D.8 Some Special Features of the Normal Distribution
Index
「Nielsen BookData」 より