Quantitative social science data with R : an introduction
著者
書誌事項
Quantitative social science data with R : an introduction
SAGE, 2019
- : pbk
大学図書館所蔵 全7件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. [306]-307) and index
内容説明・目次
内容説明
"One of the few books that provide an accessible introduction to quantitative data analysis with R. A particular strength of the text is the focus on 'real world' examples which help students to understand why they are learning these methods."
- Dr Roxanne Connelly, University of York
Relevant, engaging, and packed with student-focused learning features, this book provides the step-by-step introduction to quantitative research and data every student needs.
Gradually introducing applied statistics and R, it uses examples from across the social sciences to show you how to apply abstract statistical and methodological principles to your own work. At a student-friendly pace, it enables you to:
- Understand and use quantitative data to answer questions
- Approach surrounding ethical issues
- Collect quantitative data
- Manage, write about, and share the data effectively
Supported by incredible digital resources with online tutorials, videos, datasets, and multiple choice questions, this book gives you not only the tools you need to understand statistics, quantitative data, and R software, but also the chance to practice and apply what you have learned.
目次
Chapter 1: Introduction
Chapter 2: Introduction to R and R Studio
Chapter 3: Finding Data
Chapter 4: Data Management
Chapter 5: Variables & Manipulation
Chapter 6: Developing Hypotheses
Chapter 7: Univariate & Descriptive Statistics
Chapter 8: Visualising Data
Chapter 9: Hypothesis Testing
Chapter 10: Bivariate Analysis
Chapter 11: Linear Regression & Model Building
Chapter 12: OLS Assumptions & Diagnostic Testing
Chapter 13: Putting it all Together
「Nielsen BookData」 より