Approaches to entropy
著者
書誌事項
Approaches to entropy
Springer, c2019
大学図書館所蔵 全1件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
This is a book about thermodynamics, not history, but it adopts a semi-historical approach in order to highlight different approaches to entropy. The book does not follow a rigid temporal order of events, nor it is meant to be comprehensive. It includes solved examples for a solid understanding. The division into chapters under the names of key players in the development of the field is not intended to separate these individual contributions entirely, but to highlight their different approaches to entropy. This structure helps to provide a different view-point from other text-books on entropy.
目次
1 General thermodynamics 1.1 Mechanics 1.2 The First Law: conservation of energy 1.3 The Ideal Gas
2 Carnot and Clausius 2.1 The Carnot cycle 2.2 The Second Law 2.3 The Gibbs free energy G 2.4 The Helmholtz free energy F2.5 Available work 2.6 Maxwell's relations 2.7 The importance of entropy 2.8 Summary
3 Maxwell and Boltzmann 3.1 The Maxwell-Boltzmann distribution 3.2 The relationship between entropy and probability 3.3 Uses of the partition function 3.4 The H theorem 3.5 Early critics of the H theorem 3.6 Modern critics of the H theorem 3.7 Conclusions
4 Gibbs 4.1 General notions 4.2 Phase 4.3 The Liouville theorem 4.4 The canonical distribution 4.5 Analogies with thermodynamics 4.6 Gibbs Entropy 4.7 Variation of energy 4.8 Chemical potential 4.8.1 Small systems 4.9 Summary
5 Partition functions and ensembles 5.1 Microcanonical ensemble 5.2 Canonical ensemble 5.3 Grand canonical ensemble 5.4 Isobaric ensemble 5.5 Molecular partition function 5.6 Distinguishable particles 5.7 Quantum statistics 5.8 Rotational partition function of linear molecules
6 Planck 6.1 Radiation 6.2 Coarse graining 6.3 The Sackur-Tetrode equation 6.4 Gibbs versus Boltzmann 6.5 Entropy is not anthropomorphic
7 Einstein 7.1 Kinetic theory of thermal equilibrium 7.2 The mechanical meaning of Einstein's h 7.3 A mechanical theory of the second law 7.4 The significance of 7.5 Application to radiation 7.6 The entropy of radiation 7.7 Summary
8 Shannon 8.1 Probability and information 8.2 Maximum entropy 8.3 Bayes's theorem 8.4 Maxwell's demon 8.5 Difficulties with Szilard's principle 8.6 Szilard's engine and quantum measurements 8.7 Landauer's principle 8.8 Subjectivity 8.9 The fluctuation theorem 8.10 Summary
9 Nernst 9.1 Chemical potential 9.2 The equilibrium constant 9.3 Fixing a zero point to entropy 9.4 Modern forms of the Third Law 9.5 Attaining absolute zero 9.6 Negative temperatures
10 On Entropy as Mixed-up-ness 10.1 Gibbs's paradox 10.2 Gibbs's paradox from a statistical viewpoint 10.3 von Neumann entropy 10.4 Entropy as information 10.5 Biological systems 10.6 Economics 10.7 Conclusions
11. ProblemsA. Exact differentials and integrating factorsB. Classical mechanicsC. ErgodicityD. Equipartition of energy
「Nielsen BookData」 より