An introduction to formal logic with philosophical applications
著者
書誌事項
An introduction to formal logic with philosophical applications
Oxford University Press, c2018
- : pbk
大学図書館所蔵 全2件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
Rigorous yet engaging and accessible, Introduction to Formal Logic with Philosophical Applications is composed of two parts. The first part (Chapters 1-5) provides a focused, "nuts-and-bolts" introduction to formal deductive logic that covers syntax, semantics, translation, and natural deduction for propositional and predicate logics. The second part (Chapters 6-7) presents stand-alone, student-friendly essays on logic and its application in philosophy and
beyond, with writing prompts and suggestions for further readings.For instructors who prefer an exceptionally clear introduction to formal logic without the extra philosophical
applications, Introduction to Formal Logic, an abbreviated, alternate version of Introduction to Formal Logic with Philosophical Applications, is also available.
目次
Preface:
Chapter 1. Introducing Logic
1.1: Defining "Logic"
1.2: Logic and Languages
1.3: A Short History of Logic
1.4: Separating Premises from Conclusions
1.5: Validity and Soundness
Key Terms:
Chapter 2. Propositional Logic: Syntax and Semantic
2.1: Logical Operators and Translation
2.2: Syntax of PL: Wffs and Main Operators
2.3: Semantics of PL: Truth Functions
2.4: Truth Tables
2.5: Classifying Propositions
2.6: Valid and Invalid Arguments
2.7: Indirect Truth Tables
Key Terms:
Chapter 3. Inference in Propositional Logic
3.1: Rules of Inference 1
3.2: Rules of Inference 2
3.3: Rules of Equivalence 1
3.4: Rules of Equivalence 2
3.5: Practice with Derivations
3.6: The Biconditional
3.7: Conditional Proof
3.8: Logical Truths
3.9: Indirect Proof
3.10: Chapter Review
Key Terms:
Chapter 4. Monadic Predicate Logic
4.1: Introducing Predicate Logic
4.2: Translation Using M
4.3: Syntax for M
4.4: Derivations in M
4.5: Quantifier Exchange
4.6: Conditional and Indirect Proof in M
4.7: Semantics for M
4.8: Invalidity in M
Key Terms:
Chapter 5. Full First-Order Logic
5.1: Translation Using Relational Predicates
5.2: Syntax, Semantics, and Invalidity in F
5.3: Derivations in F
5.4: The Identity Predicate: Translation
5.5: The Identity Predicate: Derivations
5.6: Translation with Functions
5.7: Derivations with Functions
Key Terms:
Chapter 6. Beyond Basic Logic
6.1: Notes on Translation with PL
6.2: Conditionals
6.3: Three-Valued Logics
6.4: Metalogic
6.5: Modal Logics
6.6: Notes on Translation with M
Key Terms:
Chapter 7. Logic and Philosophy
7.1: Deduction and Induction
7.2: Fallacies and Argumentation
7.3: Logic and Philosophy of Mind: Syntax, Semantics, and the Chinese Room
7.4: Logic and the Philosophy of Religion
7.5: Truth and Liars
7.6: Names, Definite Descriptions, and Logical Form
7.7: Logicism
Appendix on the Logical Equivalence of the Rules of Equivalence
Terms:
Solutions to Selected Exercises:
Glossary/Index:
「Nielsen BookData」 より