Transcriptome data analysis : methods and protocols

著者

    • Wang, Yejun
    • Sun, Ming-an

書誌事項

Transcriptome data analysis : methods and protocols

edited by Yejun Wang, Ming-an Sun

(Methods in molecular biology / John M. Walker, series editor, 1751)(Springer protocols)

Humana Press, c2018

大学図書館所蔵 件 / 3

この図書・雑誌をさがす

内容説明・目次

内容説明

This detailed volume provides comprehensive practical guidance on transcriptome data analysis for a variety of scientific purposes. Beginning with general protocols, the collection moves on to explore protocols for gene characterization analysis with RNA-seq data as well as protocols on several new applications of transcriptome studies. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and useful, Transcriptome Data Analysis: Methods and Protocols serves as an ideal guide to the expanding purposes of this field of study.

目次

Part I: General Protocols on Transcriptome Data Analysis 1. Comparison of Gene Expression Profiles in Non-Model Eukaryotic Organisms with RNA-Seq Han Cheng, Yejun Wang, and Ming-an Sun 2. Microarray Data Analysis for Transcriptome Profiling Ming-an Sun, Xiaojian Shao, and Yejun Wang 3. Pathway and Network Analysis of Differentially Expressed Genes in Transcriptomes Qianli Huang, Ming-an Sun, and Ping Yan 4. QuickRNASeq: Guide for Pipeline Implementation and for Interactive Results Visualization Wen He, Shanrong Zhao, Chi Zhang, Michael S. Vincent, and Baohong Zhang Part II: Objective-Specialized Transcriptome Data Analysis 5. Tracking Alternatively Spliced Isoforms from Long Reads by SpliceHunter Zheng Kuang and Stefan Canzar 6. RNA-Seq-Based Transcript Structure Analysis with TrBorderExt Yejun Wang, Ming-an Sun, and Aaron P. White 7. Analysis of RNA Editing Sites from RNA-Seq Data Using GIREMI Qing Zhang 8. Bioinformatic Analysis of MicroRNA Sequencing Data Xiaonan Fu and Daoyuan Dong 9. Microarray-Based MicroRNA Expression Data Analysis with Bioconductor Emilio Mastriani, Rihong Zhai, and Songling Zhu 10. Identification and Expression Analysis of Long Intergenic Non-Coding RNAs Ming-an Sun, Rihong Zhai, Qing Zhang, and Yejun Wang 11. Analysis of RNA-Seq Data Using TEtranscripts Ying Jin and Molly Hammell Part III: New Applications of Transcriptome 12. Computational Analysis of RNA-Protein Interactions via Deep Sequencing Lei Li, Konrad U. Foerstner, and Yanjie Chao 13. Predicting Gene Expression Noise from Gene Expression Variations Xiaojian Shao and Ming-an Sun 14. A Protocol for Epigenetic Imprinting Analysis with RNA-Seq Data Jinfeng Zou, Daoquan Xiang, Raju Datla, and Edwin Wang 15. Single-Cell Transcriptome Analysis Using SINCERA Pipeline Minzhe Guo and Yan Xu 16. Mathematical Modeling and Deconvolution of Molecular Heterogeneity Identifies Novel Subpopulations in Complex Tissues Niya Wang, Lulu Chen, and Yue Wang

「Nielsen BookData」 より

関連文献: 2件中  1-2を表示

詳細情報

  • NII書誌ID(NCID)
    BB2786417X
  • ISBN
    • 9781493977093
  • 出版国コード
    us
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    New York
  • ページ数/冊数
    x, 238 p.
  • 大きさ
    27 cm
  • 件名
  • 親書誌ID
ページトップへ