An invitation to model theory

著者
    • Kirby, Jonathan
書誌事項

An invitation to model theory

Jonathan Kirby

Cambridge University Press, 2019

  • : pbk
  • : hardback

この図書・雑誌をさがす
注記

Includes bibliographical references (p. 177-178) and index

内容説明・目次

内容説明

Model theory begins with an audacious idea: to consider statements about mathematical structures as mathematical objects of study in their own right. While inherently important as a tool of mathematical logic, it also enjoys connections to and applications in diverse branches of mathematics, including algebra, number theory and analysis. Despite this, traditional introductions to model theory assume a graduate-level background of the reader. In this innovative textbook, Jonathan Kirby brings model theory to an undergraduate audience. The highlights of basic model theory are illustrated through examples from specific structures familiar from undergraduate mathematics, paying particular attention to definable sets throughout. With numerous exercises of varying difficulty, this is an accessible introduction to model theory and its place in mathematics.

目次

  • Preface
  • Part I. Languages and Structures: 1. Structures
  • 2. Terms
  • 3. Formulas
  • 4. Definable sets
  • 5. Substructures and quantifiers
  • Part II. Theories and Compactness: 6. Theories and axioms
  • 7. The complex and real fields
  • 8. Compactness and new constants
  • 9. Axiomatisable classes
  • 10. Cardinality considerations
  • 11. Constructing models from syntax
  • Part III. Changing Models: 12. Elementary substructures
  • 13. Elementary extensions
  • 14. Vector spaces and categoricity
  • 15. Linear orders
  • 16. The successor structure
  • Part IV. Characterising Definable Sets: 17. Quantifier elimination for DLO
  • 18. Substructure completeness
  • 19. Power sets and Boolean algebras
  • 20. The algebras of definable sets
  • 21. Real vector spaces and parameters
  • 22. Semi-algebraic sets
  • Part V. Types: 23. Realising types
  • 24. Omitting types
  • 25. Countable categoricity
  • 26. Large and small countable models
  • 27. Saturated models
  • Part VI. Algebraically Closed Fields: 28. Fields and their extensions
  • 29. Algebraic closures of fields
  • 30. Categoricity and completeness
  • 31. Definable sets and varieties
  • 32. Hilbert's Nullstellensatz
  • Bibliography
  • Index.

「Nielsen BookData」 より

詳細情報
  • NII書誌ID(NCID)
    BB28434438
  • ISBN
    • 9781316615553
    • 9781107163881
  • LCCN
    2018052996
  • 出版国コード
    uk
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Cambridge
  • ページ数/冊数
    xiii, 182 p.
  • 大きさ
    23 cm
  • 分類
  • 件名
ページトップへ