An invitation to model theory
著者
書誌事項
An invitation to model theory
Cambridge University Press, 2019
- : pbk
- : hardback
大学図書館所蔵 全6件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 177-178) and index
内容説明・目次
内容説明
Model theory begins with an audacious idea: to consider statements about mathematical structures as mathematical objects of study in their own right. While inherently important as a tool of mathematical logic, it also enjoys connections to and applications in diverse branches of mathematics, including algebra, number theory and analysis. Despite this, traditional introductions to model theory assume a graduate-level background of the reader. In this innovative textbook, Jonathan Kirby brings model theory to an undergraduate audience. The highlights of basic model theory are illustrated through examples from specific structures familiar from undergraduate mathematics, paying particular attention to definable sets throughout. With numerous exercises of varying difficulty, this is an accessible introduction to model theory and its place in mathematics.
目次
- Preface
- Part I. Languages and Structures: 1. Structures
- 2. Terms
- 3. Formulas
- 4. Definable sets
- 5. Substructures and quantifiers
- Part II. Theories and Compactness: 6. Theories and axioms
- 7. The complex and real fields
- 8. Compactness and new constants
- 9. Axiomatisable classes
- 10. Cardinality considerations
- 11. Constructing models from syntax
- Part III. Changing Models: 12. Elementary substructures
- 13. Elementary extensions
- 14. Vector spaces and categoricity
- 15. Linear orders
- 16. The successor structure
- Part IV. Characterising Definable Sets: 17. Quantifier elimination for DLO
- 18. Substructure completeness
- 19. Power sets and Boolean algebras
- 20. The algebras of definable sets
- 21. Real vector spaces and parameters
- 22. Semi-algebraic sets
- Part V. Types: 23. Realising types
- 24. Omitting types
- 25. Countable categoricity
- 26. Large and small countable models
- 27. Saturated models
- Part VI. Algebraically Closed Fields: 28. Fields and their extensions
- 29. Algebraic closures of fields
- 30. Categoricity and completeness
- 31. Definable sets and varieties
- 32. Hilbert's Nullstellensatz
- Bibliography
- Index.
「Nielsen BookData」 より