Functional organic and hybrid nanostructured materials : fabrication, properties, and applications

著者

書誌事項

Functional organic and hybrid nanostructured materials : fabrication, properties, and applications

edited by Quan Li

Wiley-VCH, c2018

大学図書館所蔵 件 / 1

この図書・雑誌をさがす

注記

Includes bibliographical references and index

内容説明・目次

内容説明

The first book to explore the potential of tunable functionalities in organic and hybrid nanostructured materials in a unified manner. The highly experienced editor and a team of leading experts review the promising and enabling aspects of this exciting materials class, covering the design, synthesis and/or fabrication, properties and applications. The broad topical scope includes organic polymers, liquid crystals, gels, stimuli-responsive surfaces, hybrid membranes, metallic, semiconducting and carbon nanomaterials, thermoelectric materials, metal-organic frameworks, luminescent and photochromic materials, and chiral and self-healing materials. For materials scientists, nanotechnologists as well as organic, inorganic, solid state and polymer chemists.

目次

  • Preface xiii 1 Controllable Self-Assembly of One-Dimensional Nanocrystals 1 Shaoyi Zhang, Yang Yang, and Zhihong Nie 1.1 Introduction 1 1.2 Assembly Strategies 2 1.2.1 Templated Assembly 2 1.2.1.1 Geometrically Patterned Template 2 1.2.1.2 Chemically Patterned Template 4 1.2.2 Field-Driven Assembly 7 1.2.2.1 Assembly under Electric Field 7 1.2.2.2 Magnetic Field 10 1.2.2.3 Flow Field 12 1.2.3 Assembly at Interfaces and Surface 13 1.2.3.1 Liquid-Liquid Interface 14 1.2.3.2 Liquid-Air Interface 15 1.2.3.3 Evaporation-Mediated Assembly on Solid Surface 17 1.2.4 Ligand-Guided Assembly 19 1.2.4.1 Small Molecules 19 1.2.4.2 Polymeric Species 21 1.2.4.3 Biomolecular Ligand 23 1.3 Properties and Applications 25 1.4 Perspectives and Challenges 28 References 29 2 Self-Assembled Graphene Nanostructures and Their Applications 39 Dingshan Yu, Zhongke Yuan, Xiaofen Xiao, and Quan Li 2.1 Introduction 39 2.2 State-of-the-Art Self-Assembly Strategies of Graphene Nanostructures 40 2.2.1 Langmuir-Blodgett (LB) Method 40 2.2.2 Layer-by-Layer (LbL) Assembly Method 42 2.2.3 Flow-, Evaporation-, and Interface-Induced Self-Assembly 43 2.2.4 Template-Directed Self-Assembly and Hydrothermal Processes 45 2.2.5 Spin- and Space-Confinement Self-Assembly 46 2.2.6 Composites with Carbon Nanomaterials 49 2.2.7 Composites with Polymers 51 2.2.8 Composites with Metal or Metal Compounds 53 2.3 Applications of Self-Assembled Graphene Nanostructures 57 2.3.1 Optoelectronics and Photocatalysis 57 2.3.2 Electrochemical Energy Storage 59 2.3.3 Electrocatalysis 60 2.4 Outlook 61 References 62 3 Photochromic Organic and Hybrid Self-Organized Nanostructured Materials: From Design to Applications 75 Ling Wang and Quan Li 3.1 Introduction 75 3.2 Photochromic Organic and Hybrid Nanoparticles 76 3.2.1 Noble Metal Nanoparticles with Photochromic Molecules 77 3.2.2 Fluorescent Nanoparticles with Photochromic Molecules 81 3.2.3 Mesoporous Silica Nanoparticles with Photochromic Molecules 83 3.3 Photochromic Carbon-Based Nanomaterials 87 3.3.1 Carbon Nanotubes with Photochromic Molecules 87 3.3.2 Graphene Derivatives with Photochromic Molecules 90 3.4 Photochromic Chiral Liquid-Crystalline Nanostructured Materials 91 3.4.1 Cholesteric Liquid-Crystalline Superstructures 93 3.4.2 Liquid-Crystalline Blue Phase Superstructures 97 3.4.3 Liquid-Crystalline Microshells and Microdroplets 98 3.5 Summary and Perspective 100 Acknowledgments 101 References 101 4 Photoresponsive Host-Guest Nanostructured Supramolecular Systems 113 Da-Hui Qu,Wen-ZhiWang, and He Tian 4.1 Introduction 113 4.2 Photoresponsive Supramolecular Polymers andTheir Assemblies 114 4.2.1 Supramolecular Interactions in the Main Chain 115 4.2.2 Supramolecular Interactions in the Side Chain 133 4.2.3 Supramolecular Complexations as Cross-Linkers between Branched Polymer Chains 139 4.2.4 Photoresponsive Supramolecular Micelles, Vesicles, and Other Assemblies 140 4.3 Photoresponsive Host-Guest Systems Immobilized on Surfaces 148 4.4 Conclusions and Prospects 157 Acknowledgments 157 Abbreviations 157 References 158 5
  • -Electronic Ion-Pairing Assemblies Providing Nanostructured Materials 165 Yohei Haketa and Hiromitsu Maeda 5.1 Introduction 165 5.2 Nanostructures Based on Self-Assembling -Electronic Charged Species 167 5.2.1 Formation of Nanofibers 167 5.2.2 Formation of Nanotubes and Others 172 5.3 Ionic Liquid Crystals Based on -Electronic Charged Species 175 5.4 Assemblies Based on Genuine -Electronic Ions 177 5.5 Ion-Pairing Assemblies Based on -Electronic Anion-Responsive Molecules 184 5.5.1 Solid-State Assemblies Based on -Electronic Anion-Responsive Molecules 184 5.5.2 Solid-State Assemblies of Receptor-Anion Complexes 186 5.5.3 Ion-Pairing Supramolecular Gels 186 5.5.4 Ion-Pairing Liquid Crystals Based on -Electronic Charged Species 188 5.6 Conclusion 193 References 194 6 Stimuli-Responsive Nanostructured Surfaces for Biomedical Applications 203 Barbara Santos Gomes and Paula M. Mendes 6.1 Introduction 203 6.2 Thin-Film Formation by Assembly on Surfaces 204 6.3 Lithographic Techniques 206 6.4 Electrically Driven Nanostructured Responsive Surfaces 209 6.5 Photodriven Nanostructured Responsive Surfaces 216 6.6 Thermo-Driven Nanostructured Responsive Surfaces 222 6.7 Chemically Controlled Nanostructured Surfaces 227 6.8 Concluding Remarks and Perspectives 234 References 235 7 Stimuli-Directed Self-Organized One-Dimensional Organic Semiconducting Nanostructures for Optoelectronic Applications 247 A.S. Achalkumar,Manoj Mathews, and Quan Li 7.1 Introduction to Discotic Liquid Crystals 247 7.2 Application of Columnar Phases in Organic Electronics 250 7.3 Alignment of Col LC Phases through Different Stimuli 253 7.3.1 Alignment Control by Molecular Design 255 7.3.2 Alignment Control of Columnar Phase through Physical Methods 262 7.3.2.1 Surface Treatment 262 7.3.2.2 Langmuir-Blodgett (LB) Deposition 266 7.3.2.3 Application of Self-Assembled Monolayers 269 7.3.2.4 Application of Chemically Modified Surfaces and Dewetting 273 7.3.2.5 Application of Sacrificial Layer 276 7.3.2.6 Alignment in Nanopores and Nanogrooves 277 7.3.2.7 Zone Casting 281 7.3.2.8 Zone Melting 282 7.3.2.9 Dip Coating, Solvent Vapor Annealing, and Solvent-Induced Precipitation 283 7.3.2.10 Magnetic-Field-Induced Alignment 287 7.3.2.11 Electric-Field-Induced Alignment 288 7.3.2.12 Photoalignment by Infrared Irradiation 290 7.3.2.13 Other Alignment Techniques 291 7.4 Conclusions and Perspective 293 References 295 8 Stimuli-Directed Helical Axis Switching in Chiral Liquid Crystal Nanostructures 307 Rafael S. Zola and Quan Li 8.1 Introduction 307 8.2 Self-Organized Chiral Nematic LCs 308 8.3 Field-Induced Helical Axis Switching: Dielectric/Magnetic Torque and Flexoelectric Effect 311 8.4 Optically Driven Helical Axis Switching 319 8.5 Confinement Mediated Helical Axis Change 328 8.6 Helical Axis Switching in CLC Polymer Composites 339 8.7 Summary and Outlook 345 References 346 9 Electrically Driven Self-Organized Chiral Liquid-Crystalline Nanostructures: Organic Molecular Photonic Crystal with Tunable Bandgap 359 Suman K. Manna, Thomas F. George, and Guoqiang Li 9.1 Introduction 359 9.1.1 Photonic Crystal 359 9.1.2 Photonic Bandgap 359 9.1.3 Light Propagation in 1D Photonic Bandgap Medium 361 9.2 Self-Assembled Photonic Crystals 362 9.2.1 Opal Structure 363 9.2.2 Cholesteric Liquid Crystal 363 9.2.2.1 Liquid Crystal 364 9.2.2.2 Nonchiral Liquid-Crystalline Phase 364 9.2.2.3 Chiral Liquid-Crystalline Phase (Cholesteric) 365 9.3 Electric-Field-Induced, Self-Assembled, Tunable Photonic Crystals 366 9.3.1 Self-Assembled Tunable Opal 367 9.3.2 Electric-Field-Induced, Self-Assembled, Tunable CLC 367 9.3.3 Transverse-Electric-Field-Induced Tunable CLCs 368 9.3.4 Polymer-Stabilized Tunable CLCs 371 9.3.5 Lower Elastic Constant LC Host 373 9.3.6 Negative LC Host 374 9.4 Conclusions 377 Acknowledgments 378 References 378 10 Nanostructured Organic-Inorganic Hybrid Membranes for High-Temperature Proton Exchange Membrane Fuel Cells 383 Jin Zhang and San Ping Jiang 10.1 Introduction 383 10.2 Nanostructured Nafion-Based Hybrid Membranes 386 10.2.1 Nafion Hybrid Membrane Based on Metal Oxides 387 10.2.1.1 Casting Method 388 10.2.1.2 In situ Sol-Gel Method 391 10.2.1.3 Liquid-Phase Deposition Method 393 10.2.2 Nafion Hybrid Membrane Based on Proton Conductors 394 10.3 Hydrocarbon Polymer-Based Hybrid Membranes 394 10.4 Nanostructured PBI-Based Hybrid Membranes 396 10.4.1 Addition of Non-proton Conductors 398 10.4.2 Conductive Inorganic Fillers 400 10.4.2.1 Functionalization of Inorganic Fillers 400 10.4.2.2 Proton-Conductor-Incorporated Inorganic Fillers 402 10.5 Alternative PA-Doped Hybrid Membranes 404 10.6 Conclusions and Outlook 405 Acknowledgment 408 References 408 11 Two-Dimensional Organic and Hybrid Porous Frameworks as Novel Electronic Material Systems: Electronic Properties and Advanced Energy Conversion Functions 419 Ken Sakaushi 11.1 Introduction 419 11.2 Electronic Function Control in Two-Dimensional Organic and Hybrid Porous Frameworks 422 11.3 Electronic Functions in 2D Organic Frameworks and Applications 424 11.4 Electronic Functions in Two-Dimensional Hybrid Porous Frameworks and Applications 433 11.5 Concluding Remarks 437 Acknowledgments 439 References 439 12 Organic/Inorganic Hybrid Nanostructured Materials for Thermoelectric Energy Conversion 445 Yucheng Lan, XiaomingWang, ChundongWang, and Mona Zebarjadi 12.1 Introduction 445 12.1.1 Inorganic Thermoelectric Materials 447 12.1.2 Organic Thermoelectric Materials 449 12.1.3 HybridThermoelectric Nanostructured Composites 453 12.2 Organic/Inorganic Thermoelectric Nanostructured Materials 454 12.2.1 PEDOT Hybrid Nanocomposites 455 12.2.2 PANI Hybrid Nanostructured Composites 458 12.2.3 CNT/Polymer Nanostructured Composites 460 12.2.3.1 CNT/PVAc Composites 461 12.2.3.2 CNT/PANI Nanostructured Composites 462 12.2.3.3 CNT/PEDOT:PSS Nanostructured Composites 464 12.2.3.4 CNT/Bi2Te3 Nanostuctured Composites 465 12.2.3.5 Three-Component CNT Nanostructured Composites 465 12.2.4 Other Hybrid Nanostructured Composites 467 12.2.4.1 P3OT Hybrid Nanocomposites 467 12.2.4.2 PTH Hybrid Nanocomposites 468 12.2.4.3 PPy Hybrid Nanocomposites 468 12.2.4.4 PC Hybrid Nanocomposites 468 12.2.4.5 PHT Hybrid Nanocomposites 468 12.2.4.6 PPT Hybrid Nanocomposites 468 12.2.4.7 P3HT Hybrid Nanocomposites 468 12.2.4.8 PA Hybrid Nanocomposites 469 12.3 Surface-Transfer Doping of Organic/Inorganic Thermoelectric Nanocomposites 469 12.4 Outlook 472 Abbreviations 473 References 473 13 Hybrid Organic-Nitride Semiconductor Nanostructures for Biosensor Applications 485 Paul Bertani and Wu Lu 13.1 Introduction 485 13.2 AlGaN/GaN Functionality and Active Region 487 13.3 Device Fabrication 491 13.4 Au-Linking and Thiol Group Employment 492 13.5 Oxidation of Nitride Surfaces in Preparation for Functionalization 494 13.6 Silanization of Oxidized Nitride Surfaces 497 13.7 DNA Immobilization and Hybridization 500 13.8 Biotin-Streptavidin 504 13.9 ImmunoFETs 507 13.10 Summary and Outlook 511 References 512 14 Polymer-Nanomaterial Composites for Optoacoustic Conversion 519 Taehwa Lee, HyoungWon Baac, Jong G. Ok, and L. Jay Guo 14.1 Introduction 519 14.2 Optoacoustic Conversion in Nanomaterials 520 14.2.1 Fundamentals of Optoacoustic Generation 520 14.2.2 Heat Transfer from the Nanomaterial Absorber to the Surrounding Polymer 521 14.3 Polymer-Nanomaterial Composite for Optoacoustic Conversion 522 14.3.1 Polymer Materials with Light-Absorbing Carbon Fillers 522 14.3.1.1 Carbon Nanotube (CNT) Composite 523 14.3.1.2 Other Carbon-Based Composites 523 14.3.2 Metal-Based Polymer Composites 527 14.3.2.1 Polymer-Metal Nanoparticle Composites 528 14.3.2.2 Polymer-Metal Film Composites 529 14.3.3 Performance Comparison 531 14.4 Applications of Optoacoustic Conversion in Nanocomposites 531 14.4.1 Optoacoustic Generation of Focused Ultrasound for Therapeutic Applications 531 14.4.2 Optoacoustic Generation in Polymer Composites for Ultrasound Imaging 537 14.4.3 CNT-PDMS Composite for Real-Time Terahertz Detection 539 14.5 Outlook and Future Direction 541 14.5.1 New High-Efficiency Optoacoustic Composites with Mechanical Robustness 541 14.5.2 New Optoacoustic Applications 543 References 544 15 Functional Nanostructured Conjugated Polymers 547 Satoshi Matsushita, Benedict San Jose, and Kazuo Akagi 15.1 Introduction 547 15.1.1 Circularly Polarized Luminescence 547 15.1.2 CPL in Conjugated Polymers 547 15.1.3 CPL with High gem Using Selective Reflection Property of N -LCs 548 15.1.4 Dynamic Switching of CPL 549 15.1.5 Chirality Transfer and Chiral Transcription 549 15.1.6 Polyacetylenes 550 15.2 DiLCPAs with Blue and Green LPL 551 15.2.1 Liquid Crystallinity of diLCPAs 552 15.2.2 Linearly Polarized Luminescence of diLCPAs 553 15.3 Lyotropic N diLCPAs with Green CPL 554 15.3.1 Liquid Crystallinity of diLCPAs 555 15.3.2 Circularly Polarized Luminescence of diLCPAs 557 15.4 Dynamic Switching of CPL by Selective Reflection through a Thermotropic N -LC 558 15.4.1 Preparation of N -LC Cells 559 15.4.2 Dynamic Switching of CPL 559 15.5 Liquid-Crystallinity-Enforced Chirality Transfer from Chiral MonoLCPA to Achiral LCPPE 561 15.5.1 Liquid Crystallinity of MonoPAs 563 15.5.2 Chirality of MonoPAs 565 15.5.3 Chirality Transfer from Chiral MonoLCPA to Achiral LCPPE 566 15.6 Conclusions and Outlook 567 Acknowledgments 568 References 569 16 Nanostructured Self-Organized Heliconical Nematic Liquid Crystals: Twist-Bend Nematic Phase 575 Hari K. Bisoyi and Quan Li 16.1 Introduction 575 16.1.1 Liquid Crystals 575 16.1.2 Twist-Bend Nematic (Ntb) Phase 578 16.2 Characterization of Ntb Phase 581 16.3 Ntb Phase in Different Classes of Liquid Crystal Compounds 583 16.3.1 Ntb Phase in a Bent-Core Compound 583 16.3.2 Ntb Phase in Dimers 585 16.3.2.1 Methylene-Linked Dimers 585 16.3.2.2 Ether-Linked Dimers 594 16.3.2.3 Imino-Linked Dimers 595 16.3.2.4 Other Dimers 597 16.3.3 Ntb Phase in Trimers 600 16.3.4 Ntb Phase in Tetramers 603 16.4 Ntb Phase in Mixtures 604 16.5 Heliconical Cholesteric Phase 606 16.6 Summary and Outlook 609 References 610 Index 623

「Nielsen BookData」 より

詳細情報

ページトップへ