Functional analysis and optimization methods in hadron physics
著者
書誌事項
Functional analysis and optimization methods in hadron physics
(SpringerBriefs in Physics)
Springer, c2019
大学図書館所蔵 全2件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references
内容説明・目次
内容説明
This book begins with a brief historical review of the early applications of standard dispersion relations in particle physics. It then presents the modern perspective within the Standard Model, emphasizing the relation of analyticity together with alternative tools applied to strong interactions, such as perturbative and lattice quantum chromodynamics (QCD), as well as chiral perturbation theory.
The core of the book argues that, in order to improve the prediction of specific hadronic observables, it is often necessary to resort to methods of complex analysis more sophisticated than the simple Cauchy integral. Accordingly, a separate mathematical chapter is devoted to solving several functional analysis optimization problems. Their applications to physical amplitudes and form factors are discussed in the following chapters, which also demonstrate how to merge the analytic approach with statistical analysis tools.
Given its scope, the book offers a valuable guide for researchers working in precision hadronic physics, as well as graduate students who are new to the field.
目次
PRELIMINARY:1. Introduction (~ 10 pages)
1.1. The strong interactions before the Standard Model
1.2. Causality, unitarity and crossing symmetry
1.3. Standard dispersion relations
1.4. Pitfalls of analytic continuation
2. Modern approach to analyticity (~ 15 pages)
2.1. Oehme's argument for Quantum Chromodynamics (QCD)
2.2. Operator Product Expansion (OPE) and analytic continuation
2.3. Analyticity versus Chiral Perturbation Theory (ChPT) and lattice QCD
2.4. Phase and modulus constraints
2.5. Functional-analysis based approach
3. Optimization problems in complex analysis (~ 40 pages)
3.1. Extremal problems in L2 norm
3.2. Extremal problems in L norm
3.3. Generalizations: vector-valued and non-real analytic functions
3.4. Series optimization by conformal mappings
4. Optimization methods for precision predictions in hadron physics (~ 50 pages)
4.1. Unitarity bounds for weak hadronic form factors
4.2. Electromagnetic charge radius of the pion at high precision
4.3. Virtual Compton scattering on proton
4.4. Conformal mappings in perturbative QCD
4.5. Testing quark-hadron duality violation
5. Other applications of analyticity (~ 10 pages)
5.1. Rigorous results from axiomatic field theory
5.2. Detection of broad resonances
5.3. Coupled-channels and three-body decays
5.4. Divergent series and hyperasymptotics
5.5. Outlook
「Nielsen BookData」 より