Business data science : combining machine learning and economics to optimize, automate, and accelerate business decisions
Author(s)
Bibliographic Information
Business data science : combining machine learning and economics to optimize, automate, and accelerate business decisions
McGraw-Hill Education, c2019
- : hardback
Available at 24 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references (p. 313-320) and index
Description and Table of Contents
Description
Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product.
Use machine learning to understand your customers, frame decisions, and drive value
The business analytics world has changed, and Data Scientists are taking over. Business Data Science takes you through the steps of using machine learning to implement best-in-class business data science. Whether you are a business leader with a desire to go deep on data, or an engineer who wants to learn how to apply Machine Learning to business problems, you'll find the information, insight, and tools you need to flourish in today's data-driven economy. You'll learn how to:
*Use the key building blocks of Machine Learning: sparse regularization, out-of-sample validation, and latent factor and topic modeling*Understand how use ML tools in real world business problems, where causation matters more that correlation*Solve data science programs by scripting in the R programming language
Today's business landscape is driven by data and constantly shifting. Companies live and die on their ability to make and implement the right decisions quickly and effectively. Business Data Science is about doing data science right. It's about the exciting things being done around Big Data to run a flourishing business. It's about the precepts, principals, and best practices that you need know for best-in-class business data science.
Table of Contents
Preface
Introduction
1 Uncertainty
2 Regression
3 Regularization
4 Classification
5 Experiments
6 Controls
7 Factorization
8 Text as Data
9 Nonparametrics
10 Artificial Intelligence
Bibliography
Index
by "Nielsen BookData"