Supramolecular chemistry in water

著者

    • Kubik, Stefan

書誌事項

Supramolecular chemistry in water

edited by Stefan Kubik

Wiley-VCH, 2019

  • : hbk.

大学図書館所蔵 件 / 5

この図書・雑誌をさがす

内容説明・目次

内容説明

Provides deep insight into the concepts and recent developments in the area of supramolecular chemistry in water Written by experts in their respective field, this comprehensive reference covers various aspects of supramolecular chemistry in water?from fundamental aspects to applications. It provides readers with a basic introduction to the current understanding of the properties of water and how they influence molecular recognition, and examines the different receptor types available in water and the types of substrates that can be bound. It also looks at areas to where they can be applied, such as materials, optical sensing, medicinal imaging, and catalysis. Supramolecular Chemistry in Water offers five major sections that address important topics like water properties, molecular recognition, association and aggregation phenomena, optical detection and imaging, and supramolecular catalysis. It covers chemistry and physical chemistry of water; water-mediated molecular recognition; peptide and protein receptors; nucleotide receptors; carbohydrate receptors; and ion receptors. The book also teaches readers all about coordination compounds; self-assembled polymers and gels; foldamers; vesicles and micelles; and surface-modified nanoparticles. In addition, it provides in-depth information on indicators and optical probes, as well as probes for medical imaging. -Covers, in a timely manner, an emerging area in chemistry that is growing more important every day -Addresses topics such as molecular recognition, aggregation, catalysis, and more -Offers comprehensive coverage of everything from fundamental aspects of supramolecular chemistry in water to its applications -Edited by one of the leading international scientists in the field Supramolecular Chemistry in Water is a one-stop-resource for all polymer chemists, catalytic chemists, biochemists, water chemists, and physical chemists involved in this growing area of research.

目次

Preface xv 1 Water Runs Deep 1 Nicholas E. Ernst and Bruce C. Gibb 1.1 The Control of Water 1 1.2 The Shape of Water 2 1.3 The Matrix of Life as a Solvent 4 1.4 Solvation Thermodynamics 6 1.5 The Three Effects 9 1.5.1 The Hydrophobic Effect 11 1.5.2 The Hofmeister Effect 19 1.5.3 The Reverse Hofmeister Effect 23 1.6 Conclusions and Future Work 24 Acknowledgments 25 References 25 2 Water-Compatible Host Systems 35 Frank Biedermann 2.1 General Overview 35 2.2 Acyclic Systems 36 2.2.1 Acyclic Molecular Recognition Units 36 2.2.2 Molecular Tweezers 38 2.2.3 Foldamers 39 2.2.4 Compartmentalized Structures Formed by Surfactant-Like Molecules 40 2.3 Macrocyclic Receptors that Bind Charged Guests 42 2.3.1 Crown Ethers, Cryptands, and Spherands 42 2.3.2 Bambus[n]urils 44 2.3.3 Calix[n]arenes 45 2.3.4 Pillar[n]arenes 48 2.4 Macrocyclic Receptors that (also) Bind Non-charged Organic Guests 50 2.4.1 Cyclodextrins 50 2.4.2 Cucurbit[n]urils 54 2.4.3 Deep Cavitands 58Contents 2.4.4 Molecular Tubes 62 2.5 Practitioner's Guidelines for Choosing a Water-Compatible Host 64 2.5.1 Guest Binding Affinity and Selectivity 64 2.5.2 Availability/Scalability 65 2.5.3 Functionality 65 2.5.4 Solubility 66 2.5.5 Biocompatibility/Toxicity 67 References 67 3 Artificial Peptide and Protein Receptors 79 Joydev Hatai and Carsten Schmuck 3.1 Introduction 79 3.2 Peptide Recognition 79 3.2.1 Calixarenes 80 3.2.2 Guanidiniocarbonyl Pyrroles 80 3.2.3 Cucurbiturils 82 3.2.4 Metal Complexes 84 3.2.5 Phosphonates 86 3.2.6 Thiourea-Containing Copolymers 87 3.3 Protein Recognition 88 3.3.1 Molecular Tweezer: Huntingtin Protein (htt) 89 3.3.2 Foldamer: Human Carbonic Anhydrase 89 3.3.3 Tetravalent Peptide: -Tryptase 90 3.3.4 Semisynthetic Fusicoccin Derivative: 14-3-3/Gab2 Protein 91 3.3.5 Ruthenium Complex: Cytochrome C 92 3.3.6 Nitrilotriacetic Acid-Peptide Conjugate: His-Tag Calmodulin 93 3.3.7 Cucurbit[7]uril: Native Insulin and Human Growth Hormone 95 3.3.8 Phosphonated Calix[6]arene: Cytochrome C 96 3.3.9 p-Sulfonatocalixarene: Human Insulin 96 3.3.10 Multivalent Calixarene: Platelet-Derived Growth Factor 97 3.4 Sensor Arrays for Proteins 99 3.4.1 Tripodal Peptide-Containing Receptors: Proteins and Glycoproteins 99 3.4.2 Substituted Porphyrins: Proteins and Metalloproteins 100 3.4.3 Poly(p-phenyleneethynylene)s: Proteins 101 3.4.4 Chemiluminescent Nanomaterials: Proteins and Cells 103 3.5 Combinatorial Fluorescent Molecular Sensors for Proteins 104 3.5.1 Probe for MMP, GST, and PDGF Protein Families 104 3.5.2 Probe for Amyloid Beta Proteins 107 3.6 Conclusions and Future Directions 108 References 109 4 Recognition, Transformation, Detection of Nucleotides and Aqueous Nucleotide-Based Materials 115 Isabel Pont, Cristina Galiana-Rosello, Alberto Lopera, Jorge Gonzalez-Garcia, and Enrique Garcia-Espana 4.1 Introduction 115 4.2 Nucleotide Structures 118 4.3 Nucleotide Receptors 119 4.3.1 Receptors without Aromatic Units 119 4.3.2 Receptors with Aromatic Units 123 4.3.3 Metal Complexes as Nucleotide Receptors 131 4.3.4 Catalytic Aspects 134 4.4 Nucleotide Sensing 140 4.4.1 General Aspects 140 4.4.2 UV-vis Sensing 140 4.4.3 Fluorescence Sensing 142 4.5 Soft Materials Incorporating Nucleotides, Nucleosides, and Nucleobases 147 4.6 Biomedical Applications 150 4.7 Challenges and Future Perspectives 151 Acknowledgment 152 References 153 5 Carbohydrate Receptors 161 Anthony P. Davis 5.1 Introduction 161 5.2 Organic Molecular Receptors 163 5.2.1 Acyclic Receptors 164 5.2.2 Macrocyclic Receptors 167 5.2.3 Macropolycyclic Cage Receptors 171 5.3 Metal Complexes as Carbohydrate Receptors 178 5.4 Boron-Based Receptors 180 5.5 Conclusions 184 References 186 6 Ion Receptors 193 Luca Leoni, Antonella Dalla Cort, Frank Biedermann, and Stefan Kubik 6.1 Introduction 193 6.1.1 Potential Applications for Ion Receptors 194 6.1.2 Binding Modes of Ion Receptors 194 6.2 Cation Receptors 197 6.2.1 Neutral Receptors 197 6.2.1.1 Crown Ethers and Cryptands 197 6.2.1.2 Cyclodextrins 198 6.2.1.3 Cucurbiturils 199 6.2.1.4 Cavitands 201 6.2.2 Negatively Charged Receptors 202 6.2.2.1 Cyclophanes 202 6.2.2.2 Cryptophanes 204 6.2.2.3 Calixarenes 204 6.2.2.4 Pillararenes 205 6.2.2.5 Molecular Tweezers 206 6.2.2.6 Acyclic Cucurbiturils 208 6.2.3.1 Metallacycles 209 6.2.3.2 Coordination Cages 210 6.3 Anion Receptors 211 6.3.1 Metal-Containing Receptors 211 6.3.1.1 Coordination Cages 212 6.3.1.2 Tetraazamacrocycle-Based Receptors 214 6.3.1.3 Diethylenetriamine- and Bis(2-pyridylmethyl)amine-Based Receptors 215 6.3.1.4 Tris(2-aminoethyl)amine and Tris(2-pyridylmethyl)amine-Based Receptors 218 6.3.1.5 Miscellaneous 220 6.3.2 Positively Charged Receptors 221 6.3.2.1 Receptors with Quaternary Ammonium Groups 221 6.3.2.2 Amine-Based Receptors 223 6.3.2.3 Guanidine-Based Receptors 225 6.3.2.4 Imidazolium-Based Receptors 227 6.3.3 Negatively Charged Receptors 228 6.3.4 Neutral Receptors 231 6.4 Zwitterion Receptors 236 6.5 Conclusion and Future Challenges 238 References 239 7 Coordination Compounds 249 Anna J. McConnell and Marc Lehr 7.1 Introduction 249 7.2 Organometallic Compounds 249 7.2.1 Macrocycles 251 7.2.2 Cages 252 7.3 Metallomacrocycles 253 7.4 Metallosupramolecular Helicates 255 7.4.1 Transition Metal Helicates 255 7.4.2 Lanthanide Helicates 257 7.5 Metallosupramolecular Bowls and Tubes 260 7.6 Metallosupramolecular Cages 262 7.6.1 Design Considerations 263 7.6.2 Thermodynamics of Guest Binding 263 7.6.3 Cage and Guest Dynamics upon Encapsulation 265 7.6.4 Chiral Recognition 266 7.6.5 Encapsulation of Biorelevant Molecules 266 7.6.6 Stabilization of Encapsulated Species 269 7.6.7 Controlling Reactivity 269 7.6.8 Catalysis 270 7.7 Metal-Organic Frameworks 272 7.8 Challenges and Future Directions 273 8 Aqueous Supramolecular Polymers and Hydrogels 285 Daniel Spitzer and Pol Besenius 8.1 Introduction 285 8.2 Hydrogen-Bonded Supramolecular Systems 287 8.3 Host-Guest Induced Supramolecular Polymers and Hydrogels 292 8.4 Metal-Ligand Coordinated Systems 296 8.5 -Conjugated Systems 301 8.6 Low Molecular Weight Hydrogelator Systems 307 8.7 Peptide-Based Molecular Amphiphiles and Their Supramolecular Systems 314 8.8 Bioinspired Systems 321 8.9 Challenges and Future Directions 326 References 326 9 Foldamers 337 Morgane Pasco, Christel Dolain, and Gilles Guichard 9.1 Introduction 337 9.2 Discrete Protein-Like Architectures by Lateral Assemblies of Helical Foldamers 338 9.2.1 Bioinspired Helix Assemblies: Top-Down Approaches 340 9.2.2 Bioinspired Helix Assemblies: Bottom-Up Approaches 344 9.3 Helix Duplexes in Aqueous Solution 350 9.4 Assemblies of Extended Chains 355 9.5 Elongated Nanostructures by Self-Assembly 357 9.6 Applications 359 9.6.1 Host-Guest Interactions With and Within Helix Bundles 359 9.6.2 Self-Assembling Foldamers Targeting Heparin 362 9.6.3 Catalysis with Self-Assembled Foldamers 363 9.6.4 Foldamer-Mediated Protein Oligomerization 364 9.6.5 Nanopores by Insertion of Foldamers into Phospholipid Membranes 366 9.7 Challenges and Future Directions 366 Acknowledgments 367 References 367 10 Vesicles and Micelles 375 Wilke C. de Vries and Bart Jan Ravoo 10.1 Introduction 375 10.2 Building Blocks and Structure of Vesicles and Micelles 376 10.2.1 Conventional Building Blocks and Packing Parameter 376 10.2.2 Driving Forces and Dynamics 379 10.2.3 Nonconventional Building Blocks 382 10.3 Stimulus-Responsive Vesicles and Micelles 387 10.3.1 Endogenous Stimuli: Redox and pH 387 10.3.1.1 Redox 387 10.3.1.2 pH 389 10.3.2 Exogenous Stimuli: Light and Temperature 391 10.3.2.1 Light 391 10.3.2.2 Temperature 392 10.4 Vesicles and Micelles as Template Structures for Nanomaterials 393 10.4.1 Condensation and Polymerization Reactions Using Template Structures 393 10.4.2 Stabilization of Vesicle and Micelle Structures by Cross-Linking 394 10.4.3 Polymer Shells Enclosing Vesicle Templates 395 10.5 Molecular Recognition of Vesicles and Micelles in Biomimetic Systems and Nanomaterials 397 10.5.1 Macrocyclic Amphiphiles 397 10.5.2 Carbohydrate and Peptide-Based Recognition 399 10.5.3 DNA-Based Recognition 402 10.6 Challenges and Future Directions 404 References 405 11 Monolayer-Protected Gold Nanoparticles for Molecular Sensing and Catalysis 413 Fabrizio Mancin, Leonard J. Prins, Federico Rastrelli, and Paolo Scrimin 11.1 Introduction 413 11.2 Analytical Techniques 414 11.2.1 Nuclear Magnetic Resonance Spectroscopy 414 11.2.2 Electron Paramagnetic Resonance Spectroscopy 416 11.2.3 Fluorescence Spectroscopy 417 11.2.4 Isothermal Titration Calorimetry 417 11.2.5 Surface-Enhanced Raman Scattering 418 11.3 Molecular Recognition and Chemosensing of Small Molecules 418 11.3.1 Multivalent Binding Interactions at the Monolayer Surface 419 11.3.2 Binding Pockets in the Monolayer 420 11.3.3 Gold Nanoparticle-Based Chemosensors 426 11.3.3.1 Indicator Displacement Assays 426 11.3.3.2 NMR Chemosensing 428 11.4 Catalysis by Nanozymes 430 11.5 Controlling Molecular Recognition Processes at the Monolayer 435 11.5.1 Regulatory Mechanisms 435 11.5.2 Adaptive Multivalent Surfaces 438 11.6 Challenges and Future Directions 442 References 442 12 Optical Probes and Sensors 449 Pavel Anzenbacher, Jr and Lorenzo M. Mosca 12.1 Introduction and Lexicon 449 12.2 Brief Fundamentals of Molecular Photoprocesses 451 12.3 Some Comments on the Design of Probes and Sensors 455 12.3.1 General Aspects 455 12.3.2 Fighting with Water 457 12.4 Probes and Sensors for Electroneutral Species 459 12.4.1 Carbohydrates 459 12.5 Probes and Sensor for Cations 462 12.5.1 Alkali and Alkali-Earth Cations 462 12.5.2 First-Row Transition Metal Ions 464 12.5.3 Heavy Metal Ions, Particularly Cadmium and Mercury 467 12.6 Probes and Sensors for Anions 469 12.6.1 Fluoride 469 12.6.2 Cyanide 472 12.6.3 Inorganic and Organic Phosphates 473 12.6.4 Carboxylates 482 12.6.5 Other Anions of Interest 487 12.6.6 Sensors for Multiple Anions 487 12.7 Sensing of Biomacromolecules 489 12.8 Challenges and Future Directions 491 References 492 13 Probes for Medical Imaging 501 Felicia M. Roland and Bradley D. Smith 13.1 Medical Imaging 501 13.2 Structure and Supramolecular Properties of Molecular Probes 503 13.2.1 Structure 503 13.2.2 Linkers 503 13.2.3 Reporter Groups 504 13.2.4 Design Aspects 504 13.3 Targeting Groups for Receptors 506 13.3.1 Drug-Like Molecules 506 13.3.2 Vitamins 507 13.3.3 Peptides 508 13.3.4 Antibodies 508 13.3.5 Aptamers 510 13.4 Signal Enhancement Strategies 511 13.4.1 Intracellular Accumulation 511 13.4.2 Signal Activation by Enzymes 512 13.5 Targeting Cell Surface Biomolecules 513 13.5.1 Anionic Phospholipids 513 13.5.2 Glycans 514 13.5.3 Antigens 515 13.6 Clinical Development 516 13.6.1 Government Approval 516 13.6.2 Multimodal Approaches 518 13.6.3 Theranostic Approaches 519 13.7 Future Role of Supramolecular Chemistry 520 Acknowledgments 521 References 521 14 Supramolecular Catalysis in Water 525 Piet W. N. M. van Leeuwen and Matthieu Raynal 14.1 Introduction 525 14.2 Classification of Supramolecular Catalysts Operating in Water 527 14.2.1 Mass Transfer Promotion through Substrate Sequestration (S1) 529 14.2.2 Catalysis by Confinement (S2) 529 14.2.3 Directed Substrate Reactivity (S3) 531 14.2.4 Construction and Modulation of the Catalytic Structure (S4) 532 14.3 Synthetic Hosts for Catalysis in Water 533 14.3.1 Cyclodextrins (CDs) 536 14.3.2 Cucurbit[n]urils (CBn) 536 14.3.3 Hosts with Aromatic Walls 537 14.3.4 Velcrands 538 14.3.5 Octa-acid 538 14.3.6 Metallocages 538 14.3.7 Hyperbranched Polymers 539 14.3.8 Dendrimers 539 14.3.9 Micelles 540 14.3.10 Vesicles 541 14.4 Supramolecular Catalysts for the Aqueous Biphasic Hydroformylation Reaction 542 14.5 Supramolecular Catalysts for Other Organometallic Reactions in Water 547 14.6 Future Directions 550 References 551 Index 567

「Nielsen BookData」 より

詳細情報

ページトップへ