R for marketing research and analytics

Bibliographic Information

R for marketing research and analytics

Chris Chapman, Elea McDonnell Feit

(Use R! / series editors, Robert Gentleman, Kurt Hornik, Giovanni Parmigiani)

Springer, c2019

2nd ed

  • : pbk

Available at  / 13 libraries

Search this Book/Journal

Note

"This Springer imprint is published by the registered company Springer Nature Switzerland AG ... Cham, Switzerland"--T.p. verso

Includes bibliographical references (p. 469-477) and index

Description and Table of Contents

Description

The 2nd edition of R for Marketing Research and Analytics continues to be the best place to learn R for marketing research. This book is a complete introduction to the power of R for marketing research practitioners. The text describes statistical models from a conceptual point of view with a minimal amount of mathematics, presuming only an introductory knowledge of statistics. Hands-on chapters accelerate the learning curve by asking readers to interact with R from the beginning. Core topics include the R language, basic statistics, linear modeling, and data visualization, which is presented throughout as an integral part of analysis. Later chapters cover more advanced topics yet are intended to be approachable for all analysts. These sections examine logistic regression, customer segmentation, hierarchical linear modeling, market basket analysis, structural equation modeling, and conjoint analysis in R. The text uniquely presents Bayesian models with a minimally complex approach, demonstrating and explaining Bayesian methods alongside traditional analyses for analysis of variance, linear models, and metric and choice-based conjoint analysis. With its emphasis on data visualization, model assessment, and development of statistical intuition, this book provides guidance for any analyst looking to develop or improve skills in R for marketing applications. The 2nd edition increases the book's utility for students and instructors with the inclusion of exercises and classroom slides. At the same time, it retains all of the features that make it a vital resource for practitioners: non-mathematical exposition, examples modeled on real world marketing problems, intuitive guidance on research methods, and immediately applicable code.

Table of Contents

Chapter 1: Welcom to R.- Chapter 2: An Overview of the R Language.- Chapter 3: Describing Data.- Chapter 4: Relationships Between Continuous Variables.- Chapter 5: Comparing Groups: Tables and Visualizations.- Chapter 6: Comparing Groups: Statistical Tests.- Chapter 7: Identifying Drivers of Outcomes: Linear Models.- Chapter 8: Reducing Data Complexity.- Chapter 9: Assorted Linear Modeling Topics.- Chapter 10: Confirmatory Factor Analysis and Structural Equation Modeling.- Chapter 11: Segmentation: Clustering and Classification.- Chapter 12: Association Rules for Market Basket Analysis.- Chapter 13: Choice Modeling.- Chapter 14: Marketing Mix Models.- Appendix A: R Versions and Related Software.- Appendix B: Scaling Up.- Appendix C: Packages Used.- Appendix D: Online Materials and Data Files.

by "Nielsen BookData"

Related Books: 1-1 of 1

  • Use R!

    series editors, Robert Gentleman, Kurt Hornik, Giovanni Parmigiani

    Springer

Details

Page Top