Language and chronology : text dating by machine learning
著者
書誌事項
Language and chronology : text dating by machine learning
(Language and computers : studies in practical linguistics, v. 84)
Brill, c2019
- : hardback
大学図書館所蔵 全6件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. [165]-180) and index
内容説明・目次
内容説明
In Language and Chronology, Toner and Han apply innovative Machine Learning techniques to the problem of the dating of literary texts. Many ancient and medieval literatures lack reliable chronologies which could aid scholars in locating texts in their historical context. The new machine-learning method presented here uses chronological information gleaned from annalistic records to date a wide range of texts. The method is also applied to multi-layered texts to aid the identification of different chronological strata within single copies.
While the algorithm is here applied to medieval Irish material of the period c.700-c.1700, it can be extended to written texts in any language or alphabet. The authors' approach presents a step change in Digital Humanities, moving us beyond simple querying of electronic texts towards the production of a sophisticated tool for literary and historical studies.
目次
Contents
List of Illustrations
Abbreviations
Introduction
0.1 Automated Dating Methods
0.1 How to Read This Book
1 Dating Texts: Principles and Methods
1.1 Introduction
1.2 Texts by Known Authors
1.3 Internal Evidence
1.4 Manuscripts
1.5 Intertextuality
1.6 Metrics
1.7 Linguistic Dating
1.8 Conclusion
2 Computational Approaches to Text Dating
2.1 A Brief History
2.2 The Problem Stated
2.3 Previous Solutions
2.4 New Solutions
2.5 Datability
2.6 Conclusion
3 Trials in English and Medieval Irish Texts
3.1 Dating English Texts
3.2 Dating Medieval Irish Texts
3.3 Implementation
3.4 Temporal Parameters
3.5 Datability
3.6 Conclusion
4 Dating Long Documents
4.0 Introduction
4.1 Building a Datable Medieval Irish Corpus
4.2 Dating Long Documents
4.3 Establishing the Date of Composition
4.4 Transmission and Manuscript Dates
4.5 Focussed Dating Predictions
4.6 Periodization
4.7 Stratification
4.8 Conclusion
Conclusion
5.1 A Temporal Model
5.2 Towards a Tool: Computational Chronometrics
5.3 Applicability to Other Literatures
Appendix A: Conventional Dating of Texts Used in This Study
A.1 Texts
Appendix B: Machine Learning
B.1 Classification, Regression and Clustering
B.2 Other Relevant Statistics
Bibliography
Index
「Nielsen BookData」 より