Big Data Analytics and Knowledge Discovery : 21st International Conference, DaWaK 2019, Linz, Austria, August 26-29, 2019, proceedings
著者
書誌事項
Big Data Analytics and Knowledge Discovery : 21st International Conference, DaWaK 2019, Linz, Austria, August 26-29, 2019, proceedings
(Lecture notes in computer science, 11708 . LNCS Sublibrary ; SL3 . Information systems and applications,
Springer, c2019
- タイトル別名
-
DaWak 2019
大学図書館所蔵 全2件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Other editors: Il-Yeol Song, Gabriele Anderst-Kotsis, A Min Tjoa, Ismail Khalil
Includes bibliographical references and index
内容説明・目次
内容説明
This book constitutes the refereed proceedings of the 21st International Conference on Big Data Analytics and Knowledge Discovery, DaWaK 2019, held in Linz, Austria, in September 2019.
The 12 full papers and 10 short papers presented were carefully reviewed and selected from 61 submissions. The papers are organized in the following topical sections: Applications; patterns; RDF and streams; big data systems; graphs and machine learning; databases.
目次
Applications.- Detecting the Onset of Machine Failure Using Anomaly Detection Methods.- A Hybrid Architecture for Tactical and Strategic Precision Agriculture.- Urban analytics of big transportation data for supporting smart cities.- Patterns.- Frequent Item Mining When Obtaining Support is Costly.- Mining Sequential Pattern of Historical Purchases for E-Commerce Recommendation.- Discovering and Visualizing Efficient Patterns in Cost/Utility Sequences.- Efficient Row Pattern Matching using Pattern Hierarchies for Sequence OLAP.- Statistically Significant Discriminative Patterns Searching.- RDF and Streams.- Multidimensional Integration of RDF datasets.- RDFPartSuite: Bridging Physical and Logical RDF Partitioning.- Mining quantitative temporal dependencies between interval-based streams.- Democratization of OLAP DSMS.- Big Data Systems.- Leveraging the Data Lake - Current State and Challenges.- SDWP: A New Data Placement Strategy for Distributed Big Data Warehouses in Hadoop.- Improved Programming-Language Independent MapReduce on Shared-Memory Systems.- Evaluating Redundancy and Partitioning of Geospatial Data in Document-Oriented Data Warehouses.- Graphs and Machine Learning.- Scalable Least Square Twin Support Vector Machine Learning.- Finding Strongly Correlated Trends in Dynamic Attributed Graphs.- Text-based Event Detection: Deciphering Date Information Using Graph Embeddings.- Efficiently Computing Homomorphic Matches of Hybrid Pattern Queries on Large Graphs.- Databases.- From Conceptual to Logical ETL Design using BPMN and Relational Algebra.- Accurate Aggregation Query-Result Estimation and Its Efficient Processing on Distributed Key-Value Store.
「Nielsen BookData」 より