Exploratory factor analysis
著者
書誌事項
Exploratory factor analysis
(Sage publications series, . Quantitative applications in the social sciences ; 182)
Sage, c2020
- : pbk
大学図書館所蔵 件 / 全17件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references and index
内容説明・目次
内容説明
A firm knowledge of factor analysis is key to understanding much published research in the social and behavioral sciences. Exploratory Factor Analysis by W. Holmes Finch provides a solid foundation in exploratory factor analysis (EFA), which along with confirmatory factor analysis, represents one of the two major strands in this field. The book lays out the mathematical foundations of EFA; explores the range of methods for extracting the initial factor structure; explains factor rotation; and outlines the methods for determining the number of factors to retain in EFA. The concluding chapter addresses a number of other key issues in EFA, such as determining the appropriate sample size for a given research problem, and the handling of missing data. It also offers brief introductions to exploratory structural equation modeling, and multilevel models for EFA. Example computer code, and the annotated output for all of the examples included in the text are available on an accompanying website.
目次
Chapter One: Introduction to Factor Analysis
Latent and Observed Variables
The Importance of Theory in Doing Factor Analysis
Comparison of Exploratory and Confirmatory Factor Analysis
EFA and Other Multivariate Data Reduction Techniques
A Brief Word About Software
Outline of the Book
Chapter Two: Mathematical Underpinnings of Factor Analysis
Correlation and Covariance Matrices
The Common Factor Model
Correspondence Between the Factor Model and the Covariance Matrix
Eigenvalues
Error Variance and Communalities
Summary
Chapter Three: Methods of Factor Extraction in Exploratory Factor Analysis
Eigenvalues, Factor Loadings, and the Observed Correlation Matrix
Maximum Likelihood
Principal Axis Factoring
Principal Components Analysis
Principal Components Versus Factor Analysis
Other Factor Extraction Methods
Example
Summary
Chapter Four: Methods of Factor Rotation
Simple Structure
Orthogonal Versus Oblique Rotation Methods
Common Orthogonal Rotations
Common Oblique Rotations
Target Factor Rotation
Bifactor Rotation
Example
Deciding Which Rotation to Use
Summary
Appendix
Chapter Five: Methods for Determining the Number of Factors to Retain in Exploratory Factor Analysis
Scree Plot and Eigenvalue Greater Than 1 Rule
Objective Methods Based on the Scree Plot
Eigenvalues and the Proportion of Variance Explained
Residual Correlation Matrix
Chi-Square Goodness of Fit Test for Maximum Likelihood
Parallel Analysis
Minimum Average Partial
Very Simple Structure
Example
Summary
Chapter Six: Final Issues in Factor Analysis
Proper Reporting Practices for Factor Analysis
Factor Scores
Power Analysis and A Priori Sample Size Determination
Dealing With Missing Data
Exploratory Structural Equation Modeling
Multilevel EFA
Summary
「Nielsen BookData」 より