Stretchable bioelectronics for medical devices and systems
著者
書誌事項
Stretchable bioelectronics for medical devices and systems
(Microsystems and nanosystems)
Springer, c2016
大学図書館所蔵 件 / 全1件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references and index
Softcover reprint of the hardcover 1st edition 2016
内容説明・目次
内容説明
This book highlights recent advances in soft and stretchable biointegrated electronics. A renowned group of authors address key ideas in the materials, processes, mechanics, and devices of soft and stretchable electronics; the wearable electronics systems; and bioinspired and implantable biomedical electronics. Among the topics discussed are liquid metals, stretchable and flexible energy sources, skin-like devices, in vitro neural recording, and more.
Special focus is given to recent advances in extremely soft and stretchable bio-inspired electronics with real-world clinical studies that validate the technology. Foundational theoretical and experimental aspects are also covered in relation to the design and application of these biointegrated electronics systems. This is an ideal book for researchers, engineers, and industry professionals involved in developing healthcare devices, medical tools and related instruments relevant to various clinical practices.
目次
Liquid Metals for Soft and Stretchable Electronics.- Stretchability, Conformability, and Low-Cost Manufacture of Epidermal Sensors.- Mechanics and Designs of Stretchable Bioelectronics.- Soft Power: Stretchable and Ultra-Flexible Energy Sources for Wearable and Implantable Devices.- Wireless Applications of Conformal Bioelectronics.- Ultrathin, Skin-Like Devices for Precise, Continuous Thermal Property Mapping of Human Skin and Soft Tissues.- Soft Bio-Sensor Systems using Flexible and Stretchable Electronics Technology.- High-Performance Wearable Bioelectronics Integrated with Functional Nanomaterials.- Sensor Skins: An Overview.- Multifunctional Epidermal Sensor Systems with Ultrathin Encapsulation Packaging for Health Monitoring.- Laser-Enabled Fabrication Technologies for Low-Cost Flexible/Conformal Cutaneous Wound Interfaces.- Nanomaterials Based Skin-like Electronics for the Unconscious and Continuous Monitoring of Body Status.- Mechanically Compliant Neural Interfaces.- In Vitro Neural Recording by Microelectrode Array.- Materials and Designs for Multimodal Flexible Neural Probes.
「Nielsen BookData」 より