Hybrid machine intelligence for medical image analysis
Author(s)
Bibliographic Information
Hybrid machine intelligence for medical image analysis
(Studies in computational intelligence, v. 841)
Springer, c2020
Available at 1 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Other editors: Debanjan Konar, Jan Platos, Chinmoy Kar, Kalpana Sharma
Includes bibliographical references and index
Description and Table of Contents
Description
The book discusses the impact of machine learning and computational intelligent algorithms on medical image data processing, and introduces the latest trends in machine learning technologies and computational intelligence for intelligent medical image analysis. The topics covered include automated region of interest detection of magnetic resonance images based on center of gravity; brain tumor detection through low-level features detection; automatic MRI image segmentation for brain tumor detection using the multi-level sigmoid activation function; and computer-aided detection of mammographic lesions using convolutional neural networks.
Table of Contents
Preface.- Introduction.- Brain Tumor Segmentation from T1 Weighted MRI Images Using Rough Set Reduct and Quantum Inspired Particle Swarm Optimization.- Automated Region of Interest detection of Magnetic Resonance (MR) images by Center of Gravity (CoG).- Brain tumors detection through low level features detection and rotation estimation.- Automatic MRI Image Segmentation for Brain tumors detection using Multilevel Sigmoid Activation (MUSIG) function.- Automatic Segmentation of pulmonary nodules in CT Images for Lung Cancer detection using self-supervised Neural Network Architecture.- A Hierarchical Fused Fuzzy Deep Neural Network for MRI Image Segmentation and Brain Tumor Classification.- Computer Aided Detection of Mammographic Lesions using Convolutional Neural Network (CNN).- Conclusion.
by "Nielsen BookData"