Group theory for physicists : with applications
Author(s)
Bibliographic Information
Group theory for physicists : with applications
Cambridge University Press, 2019
Available at 3 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references and index
Description and Table of Contents
Description
Group theory helps readers in understanding the energy spectrum and the degeneracy of systems possessing discrete symmetry and continuous symmetry. The fundamental concepts of group theory and its applications are presented with the help of solved problems and exercises. The text covers two essential aspects of group theory, namely discrete groups and Lie groups. Important concepts including permutation groups, point groups and irreducible representation related to discrete groups are discussed with the aid of solved problems. Topics such as the matrix exponential, the circle group, tensor products, angular momentum algebra and the Lorentz group are explained to help readers in understanding the quark model and theory composites. Real-life applications including molecular vibration, level splitting perturbation, crystal field splitting and the orthogonal group are also covered. Application-oriented solved problems and exercises are interspersed throughout the text to reinforce understanding of the key concepts.
Table of Contents
- Preface
- Acknowledgement
- Dedication
- 1. Introduction
- 2. Molecular symmetry
- 3. Representations of finite groups
- 4. Elementary applications
- 5. Lie groups and lie algebras
- 6. Further applications
- Reference
- Index.
by "Nielsen BookData"