Bifurcation and stability in nonlinear dynamical systems
Author(s)
Bibliographic Information
Bifurcation and stability in nonlinear dynamical systems
(Nonlinear systems and complexity / series editor, Albert C.J. Luo, v. 28)
Springer, c2019
Available at 4 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
-
Library, Research Institute for Mathematical Sciences, Kyoto University数研
LUO||2||6200040087932
Note
Includes bibliographical references and index
Description and Table of Contents
Description
This book systematically presents a fundamental theory for the local analysis of bifurcation and stability of equilibriums in nonlinear dynamical systems. Until now, one does not have any efficient way to investigate stability and bifurcation of dynamical systems with higher-order singularity equilibriums. For instance, infinite-equilibrium dynamical systems have higher-order singularity, which dramatically changes dynamical behaviors and possesses the similar characteristics of discontinuous dynamical systems. The stability and bifurcation of equilibriums on the specific eigenvector are presented, and the spiral stability and Hopf bifurcation of equilibriums in nonlinear systems are presented through the Fourier series transformation. The bifurcation and stability of higher-order singularity equilibriums are presented through the (2m)th and (2m+1)th -degree polynomial systems. From local analysis, dynamics of infinite-equilibrium systems is discussed. The research on infinite-equilibrium systems will bring us to the new era of dynamical systems and control.
Presents an efficient way to investigate stability and bifurcation of dynamical systems with higher-order singularity equilibriums;
Discusses dynamics of infinite-equilibrium systems;
Demonstrates higher-order singularity.
Table of Contents
Stability of equilibriums.- Bifurcation of equilibriums.- Low-dimensional dynamical system.- Equilibrium and higher-singularity.- Low-degree polynomial systems.- (2m)th-degree polynomial systems.- (2m+1)th-degree polynomial systems.- Infinite-equilibrium systems.
by "Nielsen BookData"