Multilevel modeling
著者
書誌事項
Multilevel modeling
(Sage publications series, . Quantitative applications in the social sciences ; v. 143)
Sage, c2020
2nd ed
大学図書館所蔵 全15件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Previous edition: 2004
Includes bibliographical references and index
内容説明・目次
内容説明
Multilevel Modeling is a concise, practical guide to building models for multilevel and longitudinal data. Author Douglas A. Luke begins by providing a rationale for multilevel models; outlines the basic approach to estimating and evaluating a two-level model; discusses the major extensions to mixed-effects models; and provides advice for where to go for instruction in more advanced techniques. Rich with examples, the Second Edition expands coverage of longitudinal methods, diagnostic procedures, models of counts (Poisson), power analysis, cross-classified models, and adds a new section added on presenting modeling results. A website for the book includes the data and the statistical code (both R and Stata) used for all of the presented analyses.
目次
Series Editor's Introduction
About the Author
Preface
1. The Need for Multilevel Modeling
Background and Rationale
Theoretical Reasons for Multilevel Models
Statistical Reasons for Multilevel Models
Scope of Book
Online Book Resources
2. Planning a Multilevel Model
The Basic Two-Level Multilevel Model
The Importance of Random Effects
Classifying Multilevel Models
3. Building a Multilevel Model
Introduction to Tobacco Voting Data Set
Assessing the Need for a Multilevel Model
Model-building Strategies
Estimation
Level-2 Predictors and Cross-Level Interactions
Hypothesis Testing
4. Assessing a Multilevel Model
Assessing Model Fit and Performance
Estimating Posterior Means
Centering
Power Analysis
5. Extending the Basic Model
The Flexibility of the Mixed-Effects Model
Generalized Models
Three-level Models
Cross-classified Models
6. Longitudinal Models
Longitudinal Data as Hierarchical: Time Nested Within Person
Intra-individual Change
Inter-individual Change
Alternative Covariance Structures
7. Guidance
Recommendations for Presenting Results
Useful Resources
References
「Nielsen BookData」 より