Computational approaches for understanding dynamical systems : protein folding and assembly
Author(s)
Bibliographic Information
Computational approaches for understanding dynamical systems : protein folding and assembly
(Progress in molecular biology and translational science, v. 170)
Academic Press, an imprint of Elsevier, 2020
Available at / 5 libraries
-
No Libraries matched.
- Remove all filters.
Note
Includes bibliographical references and index
Description and Table of Contents
Description
Computational Approaches for Understanding Dynamical Systems: Protein Folding and Assembly, Volume 170 in the Progress in Molecular Biology and Translational Science series, provides the most topical, informative and exciting monographs available on a wide variety of research topics. The series includes in-depth knowledge on the molecular biological aspects of organismal physiology, with this release including chapters on Pairwise-Additive and Polarizable Atomistic Force Fields for Molecular Dynamics Simulations of Proteins, Scale-consistent approach to the derivation of coarse-grained force fields for simulating structure, dynamics, and thermodynamics of biopolymers, Enhanced sampling and free energy methods, and much more.
Table of Contents
1. Pairwise-Additive and Polarizable Atomistic Force Fields for Molecular Dynamics Simulations of Proteins Justin Lemkul 2. Scale-consistent approach to the derivation of coarse-grained force fields for simulating structure, dynamics, and thermodynamics of biopolymers Adam Liwo 3. Monte Carlo methods in protein folding and assembly Sandipan Mohanty 4. Enhanced sampling and free energy methods Qinghua Liao 5. Markov models of molecular simulations of protein folding, protein-protein interactions, and aggregation Nicolae-viorel Buchete 6. Molecular dynamics simulations with experimental restraints Kresten Lindorff-Larsen 7. Protein folding simulations Ivan Coluzza 8. Thermal stability of proteins Fabio Sterpone 9. Aggregation of short disease-related peptides Philippe Derreumaux 10. Dichotomy between universality and specificity of amyloid ss-protein oligomer formation: Molecular dynamics perspective Brigita Urbanc 11. Computational studies of protein aggregation mediated by amyloid: Fibril elongation and secondary nucleation Wei Han
by "Nielsen BookData"