The critical philosophy and its roots
著者
書誌事項
The critical philosophy and its roots
(Kant's philosophy of mathematics, v. 1)
Cambridge University Press, 2020
- : hardback
大学図書館所蔵 全6件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 296-311) and index
内容説明・目次
内容説明
The late 1960s saw the emergence of new philosophical interest in Kant's philosophy of mathematics, and since then this interest has developed into a major and dynamic field of study. In this state-of-the-art survey of contemporary scholarship on Kant's mathematical thinking, Carl Posy and Ofra Rechter gather leading authors who approach it from multiple perspectives, engaging with topics including geometry, arithmetic, logic, and metaphysics. Their essays offer fine-grained analysis of Kant's philosophy of mathematics in the context of his Critical philosophy, and also show sensitivity to its historical background. The volume will be important for readers seeking a comprehensive picture of the current scholarship about the development of Kant's philosophy of mathematics, its place in his overall philosophy, and the Kantian themes that influenced mathematics and its philosophy after Kant.
目次
- Introduction
- Part I. Roots: 1. Kant and Mendelssohn on the use of signs in mathematics Katherine Dunlop
- 2. Of griffins and horses: mathematics, metaphysics and Kant's critical turn Carl Posy
- 3. Kant on mathematics and the metaphysics of corporeal nature: the role of the infinitesimal Daniel Warren
- Part II. Method and Logic: 4. Kant's theory of mathematics: what theory of what mathematics? Jaakko Hintikka
- 5. Singular terms and intuitions in Kant: a reappraisal Mirella Capozzi
- 6. Kant and the character of mathematical inference Desmond Hogan
- Part III. Space and Geometry: 7. Kant on parallel lines: definitions, postulates, and axioms Jeremy Heis
- 8. Continuity, constructibility, and intuitivity Gordon Brittan
- 9. Space and geometry in the B deduction Michael Friedman
- Part IV. Arithmetic and Number: 10. Arithmetic and the conditions of possible experience Emily Carson
- 11. Kant's philosophy of arithmetic: an outline of a new approach Daniel Sutherland
- 12. The critique of pure reason on arithmetic W. W. Tait.
「Nielsen BookData」 より