High-pressure flows for propulsion applications
著者
書誌事項
High-pressure flows for propulsion applications
(Progress in astronautics and aeronautics, v. 260)
American Institute of Aeronautics and Astronautics, c2020
大学図書館所蔵 件 / 全4件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references and index
内容説明・目次
内容説明
High-pressure flows occur in nature, in industrial processes and in manufactured devices but not in human personal experience which is limited to atmospheric pressure. In nature, high-pressure flows are found in petroleum reservoirs, at ocean depths, and in the atmospheres of planets such as Venus. In industry, the enhanced solubility that occurs at high pressures is used to extract certain chemical species; for example, the solubility of caffeine in supercritical carbon dioxide enables production of decaffeinated coffee and tea. Manufactured devices such as diesel engines and liquid rocket engines operate at pressures well above atmospheric pressure. How mixtures of chemical species behave under high-pressure conditions is described by thermodynamics. However, because thermodynamics cannot describe flows, thermodynamics must be coupled to concepts of motion and transport in order to construct a physical description characterizing all relevant processes in high-pressure flows. The chapters in this book describe observations and modeling of high-pressure flows encountered in aeronautics and astronautics. They have been selected to present the current understanding of high-pressure flows. By editorial intent, agreement between authors on all aspects of the high-pressure field of research was not sought as it was felt that revealing where disagreement exists on specific aspects indicates where the new research opportunities are. Experimental, theoretical and numerical studies are all represented in the chapters. Fundamental investigations are presented first, followed by practical studies.
「Nielsen BookData」 より