Propagating terraces and the dynamics of front-like solutions of reaction-diffusion equations on R
Author(s)
Bibliographic Information
Propagating terraces and the dynamics of front-like solutions of reaction-diffusion equations on R
(Memoirs of the American Mathematical Society, no. 1278)
American Mathematical Society, c2020
Available at / 6 libraries
-
No Libraries matched.
- Remove all filters.
Note
"March 2020, volume 264, number 1278 (first of 6 numbers)"
Includes bibliographical reference (p. 86-87)
Description and Table of Contents
Description
The author considers semilinear parabolic equations of the form $u_t=u_xx f(u),\quad x\in \mathbb R,t>0,$ where $f$ a $C^1$ function. Assuming that $0$ and $\gamma >0$ are constant steady states, the author investigates the large-time behavior of the front-like solutions, that is, solutions $u$ whose initial values $u(x,0)$ are near $\gamma $ for $x\approx -\infty $ and near $0$ for $x\approx \infty $. If the steady states $0$ and $\gamma $ are both stable, the main theorem shows that at large times, the graph of $u(\cdot ,t)$ is arbitrarily close to a propagating terrace (a system of stacked traveling fonts). The author proves this result without requiring monotonicity of $u(\cdot ,0)$ or the nondegeneracy of zeros of $f$.
The case when one or both of the steady states $0$, $\gamma $ is unstable is considered as well. As a corollary to the author's theorems, he shows that all front-like solutions are quasiconvergent: their $\omega $-limit sets with respect to the locally uniform convergence consist of steady states. In the author's proofs he employs phase plane analysis, intersection comparison (or, zero number) arguments, and a geometric method involving the spatial trajectories $\{(u(x,t),u_x(x,t)):x\in \mathbb R\}$, $t>0$, of the solutions in question.
Table of Contents
Introduction
Main results
Phase plane analysis
Proofs of Propositions 2.8, 2.12
Preliminaries on the limit sets and zero number
Proofs of the main theorems
Bibliography.
by "Nielsen BookData"