Body sensor networking, design and algorithms

著者

    • Sanei, Saeid
    • Constantinides, A. G.
    • Jarchi, Delaram

書誌事項

Body sensor networking, design and algorithms

Saeid Sanei, Delaram Jarchi, Anthony G. Constantinides

John Wiley, 2020

タイトル別名

Body sensor networking : design and algorithms

大学図書館所蔵 件 / 3

この図書・雑誌をさがす

注記

Includes bibliographical references and index

内容説明・目次

内容説明

A complete guide to the state of the art theoretical and manufacturing developments of body sensor network, design, and algorithms In Body Sensor Networking, Design, and Algorithms, professionals in the field of Biomedical Engineering and e-health get an in-depth look at advancements, changes, and developments. When it comes to advances in the industry, the text looks at cooperative networks, noninvasive and implantable sensor microelectronics, wireless sensor networks, platforms, and optimization-to name a few. Each chapter provides essential information needed to understand the current landscape of technology and mechanical developments. It covers subjects including Physiological Sensors, Sleep Stage Classification, Contactless Monitoring, and much more. Among the many topics covered, the text also includes additions such as: Over 120 figures, charts, and tables to assist with the understanding of complex topics Design examples and detailed experimental works A companion website featuring MATLAB and selected data sets Additionally, readers will learn about wearable and implantable devices, invasive and noninvasive monitoring, biocompatibility, and the tools and platforms for long-term, low-power deployment of wireless communications. It's an essential resource for understanding the applications and practical implementation of BSN when it comes to elderly care, how to manage patients with chronic illnesses and diseases, and use cases for rehabilitation.

目次

Preface xiii About the Companion Website xv 1 Introduction 1 1.1 History of Wearable Technology 1 1.2 Introduction to BSN Technology 2 1.3 BSN Architecture 7 1.4 Layout of the Book 10 References 11 2 Physical, Physiological, Biological, and Behavioural States of the Human Body 17 2.1 Introduction 17 2.2 Physical State of the Human Body 17 2.3 Physiological State of Human Body 19 2.4 Biological State of Human Body 23 2.5 Psychological and Behavioural State of the Human Body 24 2.6 Summary and Conclusions 30 References 31 3 Physical, Physiological, and Biological Measurements 35 3.1 Introduction 35 3.2 Wearable Technology for Gait Monitoring 35 3.2.1 Accelerometer and Its Application to Gait Monitoring 36 3.2.1.1 How Accelerometers Operate 37 3.2.1.2 Accelerometers in Practice 39 3.2.2 Gyroscope and IMU 40 3.2.3 Force Plates 41 3.2.4 Goniometer 41 3.2.5 Electromyography 41 3.2.6 Sensing Fabric 42 3.3 Physiological Sensors 42 3.3.1 Multichannel Measurement of the Nerves Electric Potentials 42 3.3.2 Other Sensors 45 3.4 Biological Sensors 48 3.4.1 The Structures of Biological Sensors - The Principles 48 3.4.2 Emerging Biosensor Technologies 51 3.5 Conclusions 51 References 53 4 Ambulatory and Popular Sensor Measurements 59 4.1 Introduction 59 4.2 Heart Rate 59 4.2.1 HR During Physical Exercise 60 4.3 Respiration 62 4.4 Blood Oxygen Saturation Level 67 4.5 Blood Pressure 70 4.5.1 Cuffless Blood Pressure Measurement 71 4.6 Blood Glucose 72 4.7 Body Temperature 73 4.8 Commercial Sensors 74 4.9 Conclusions 75 References 76 5 Polysomnography and Sleep Analysis 83 5.1 Introduction 83 5.2 Polysomnography 84 5.3 Sleep Stage Classification 85 5.3.1 Sleep Stages 85 5.3.2 EEG-Based Classification of Sleep Stages 86 5.3.2.1 Time Domain Features 86 5.3.2.2 Frequency Domain Features 87 5.3.2.3 Time-frequency Domain Features 87 5.3.2.4 Short-time Fourier Transform 88 5.3.2.5 Wavelet Transform 88 5.3.2.6 Matching Pursuit 88 5.3.2.7 Empirical Mode Decomposition 89 5.3.2.8 Nonlinear Features 89 5.3.3 Classification Techniques 90 5.3.3.1 Using Neural Networks 90 5.3.3.2 Application of CNNs 92 5.3.4 Sleep Stage Scoring Using CNN 94 5.4 Monitoring Movements and Body Position During Sleep 96 5.5 Conclusions 99 References 100 6 Noninvasive, Intrusive, and Nonintrusive Measurements 107 6.1 Introduction 107 6.2 Noninvasive Monitoring 107 6.3 Contactless Monitoring 109 6.3.1 Remote Photoplethysmography 109 6.3.1.1 Derivation of Remote PPG 110 6.3.2 Spectral Analysis Using Autoregressive Modelling 111 6.3.3 Estimation of Physiological Parameters Using Remote PPG 114 6.3.3.1 Heart Rate Estimation 114 6.3.3.2 Respiratory Rate Estimation 116 6.3.3.3 Blood Oxygen Saturation Level Estimation 117 6.3.3.4 Pulse Transmit Time Estimation 118 6.3.3.5 Video Pre-processing 119 6.3.3.6 Selection of Regions of Interest 120 6.3.3.7 Derivation of the rPPG Signal 120 6.3.3.8 Processing rPPG Signals 120 6.3.3.9 Calculation of rPTT/dPTT 121 6.4 Implantable Sensor Systems 122 6.5 Conclusions 123 References 124 7 Single and Multiple Sensor Networking for Gait Analysis 129 7.1 Introduction 129 7.2 Gait Events and Parameters 129 7.2.1 Gait Events 129 7.2.2 Gait Parameters 130 7.2.2.1 Temporal Gait Parameters 130 7.2.2.2 Spatial Gait Parameters 132 7.2.2.3 Kinetic Gait Parameters 133 7.2.2.4 Kinematic Gait Parameters 133 7.3 Standard Gait Measurement Systems 135 7.3.1 Foot Plantar Pressure System 135 7.3.2 Force-plate Measurement System 135 7.3.3 Optical Motion Capture Systems 137 7.3.4 Microsoft Kinect Image and Depth Sensors 138 7.4 Wearable Sensors for Gait Analysis 140 7.4.1 Single Sensor Platforms 140 7.4.2 Multiple Sensor Platforms 141 7.5 Gait Analysis Algorithms Based on Accelerometer/Gyroscope 143 7.5.1 Estimation of Gait Events 143 7.5.2 Estimation of Gait Parameters 144 7.5.2.1 Estimation of Orientation 144 7.5.2.2 Estimating Angles Using Accelerometers 146 7.5.2.3 Estimating Angles Using Gyroscopes 147 7.5.2.4 Fusing Accelerometer and Gyroscope Data 148 7.5.2.5 Quaternion Based Estimation of Orientation 148 7.5.2.6 Step Length Estimation 150 7.6 Conclusions 152 References 152 8 Popular Health Monitoring Systems 157 8.1 Introduction 157 8.2 Technology for Data Acquisition 157 8.3 Physiological Health Monitoring Technologies 158 8.3.1 Predicting Patient Deterioration 158 8.3.2 Ambient Assisted Living: Monitoring Daily Living Activities 163 8.3.3 Monitoring Chronic Obstructive Pulmonary Disease Patients 164 8.3.4 Movement Tracking and Fall Detection/Prevention 165 8.3.5 Monitoring Patients with Dementia 166 8.3.6 Monitoring Patients with Parkinson's Disease 168 8.3.7 Odour Sensitivity Measurement 172 8.4 Conclusions 174 References 174 9 Machine Learning for Sensor Networks 183 9.1 Introduction 183 9.2 Clustering Approaches 187 9.2.1 k-means Clustering Algorithm 187 9.2.2 Iterative Self-organising Data Analysis Technique 188 9.2.3 Gap Statistics 188 9.2.4 Density-based Clustering 189 9.2.5 Affinity-based Clustering 190 9.2.6 Deep Clustering 190 9.2.7 Semi-supervised Clustering 191 9.2.7.1 Basic Semi-supervised Techniques 191 9.2.7.2 Deep Semi-supervised Techniques 191 9.2.8 Fuzzy Clustering 192 9.3 Classification Algorithms 193 9.3.1 Decision Trees 193 9.3.2 Random Forest 194 9.3.3 Linear Discriminant Analysis 194 9.3.4 Support Vector Machines 195 9.3.5 k-nearest Neighbour 201 9.3.6 Gaussian Mixture Model 201 9.3.7 Logistic Regression 202 9.3.8 Reinforcement Learning 202 9.3.9 Artificial Neural Networks 203 9.3.9.1 Deep Neural Networks 204 9.3.9.2 Convolutional Neural Networks 205 9.3.9.3 Recent DNN Approaches 207 9.3.10 Gaussian Processes 208 9.3.11 Neural Processes 208 9.3.12 Graph Convolutional Networks 209 9.3.13 Naive Bayes Classifier 209 9.3.14 Hidden Markov Model 210 9.3.14.1 Forward Algorithm 212 9.3.14.2 Backward Algorithm 212 9.3.14.3 HMM Design 212 9.4 Common Spatial Patterns 213 9.5 Applications of Machine Learning in BSNs and WSNs 216 9.5.1 Human Activity Detection 216 9.5.2 Scoring Sleep Stages 217 9.5.3 Fault Detection 218 9.5.4 Gas Pipeline Leakage Detection 218 9.5.5 Measuring Pollution Level 218 9.5.6 Fatigue-tracking and Classification System 218 9.5.7 Eye-blink Artefact Removal from EEG Signals 219 9.5.8 Seizure Detection 219 9.5.9 BCI Applications 219 9.6 Conclusions 219 References 220 10 Signal Processing for Sensor Networks 229 10.1 Introduction 229 10.2 Signal Processing Problems for Sensor Networks 230 10.3 Fundamental Concepts in Signal Processing 231 10.3.1 Nonlinearity of the Medium 231 10.3.2 Nonstationarity 232 10.3.3 Signal Segmentation 233 10.3.4 Signal Filtering 236 10.4 Mathematical Data Models 237 10.4.1 Linear Models 237 10.4.1.1 Prediction Method 237 10.4.1.2 Prony's Method 238 10.4.1.3 Singular Spectrum Analysis 240 10.4.2 Nonlinear Modelling 242 10.4.3 Gaussian Mixture Model 243 10.5 Transform Domain Signal Analysis 245 10.6 Time-frequency Domain Transforms 245 10.6.1 Short-time Fourier Transform 245 10.6.2 Wavelet Transform 246 10.6.2.1 Continuous Wavelet Transform 246 10.6.2.2 Examples of Continuous Wavelets 247 10.6.2.3 Discrete Time Wavelet Transform 247 10.6.3 Multiresolution Analysis 248 10.6.4 Synchro-squeezing Wavelet Transform 249 10.7 Adaptive Filtering 250 10.8 Cooperative Adaptive Filtering 251 10.8.1 Diffusion Adaptation 252 10.9 Multichannel Signal Processing 254 10.9.1 Instantaneous and Convolutive BSS Problems 255 10.9.2 Array Processing 257 10.10 Signal Processing Platforms for BANs 258 10.11 Conclusions 259 References 260 11 Communication Systems for Body Area Networks 267 11.1 Introduction 267 11.2 Short-range Communication Systems 271 11.2.1 Bluetooth 271 11.2.2 Wi-Fi 272 11.2.3 ZigBee 272 11.2.4 Radio Frequency Identification Devices 273 11.2.5 Ultrawideband 273 11.2.6 Other Short-range Communication Methods 274 11.2.7 RF Modules Available in Market 275 11.3 Limitations, Interferences, Noise, and Artefacts 275 11.4 Channel Modelling 276 11.4.1 BAN Propagation Scenarios 276 11.4.1.1 On-body Channel 276 11.4.1.2 In-body Channel 277 11.4.1.3 Off-body Channel 277 11.4.1.4 Body-to-body (or Interference) Channel 278 11.4.2 Recent Approaches to BAN Channel Modelling 278 11.4.3 Propagation Models 279 11.4.4 Standards and Guidelines 283 11.5 BAN-WSN Communications 284 11.6 Routing in WBAN 285 11.6.1 Posture-based Routing 285 11.6.2 Temperature-based Routing 286 11.6.3 Cross-layer Routing 287 11.6.4 Cluster-based Routing 288 11.6.5 QoS-based Routing 289 11.7 BAN-building Network Integration 290 11.8 Cooperative BANs 290 11.9 BAN Security 291 11.10 Conclusions 292 References 292 12 Energy Harvesting Enabled Body Sensor Networks 301 12.1 Introduction 301 12.2 Energy Conservation 302 12.3 Network Capacity 302 12.4 Energy Harvesting 303 12.5 Challenges in Energy Harvesting 304 12.6 Types of Energy Harvesting 307 12.6.1 Harvesting Energy from Kinetic Sources 308 12.6.2 Energy Sources from Radiant Sources 312 12.6.3 Energy Harvesting from Thermal Sources 312 12.6.4 Energy Harvesting from Biochemical and Chemical Sources 313 12.7 Topology Control 315 12.8 Typical Energy Harvesters for BSNs 317 12.9 Predicting Availability of Energy 318 12.10 Reliability of Energy Storage 319 12.11 Conclusions 320 References 321 13 Quality of Service, Security, and Privacy for Wearable Sensor Data 325 13.1 Introduction 325 13.2 Threats to a BAN 326 13.2.1 Denial-of-service 326 13.2.2 Man-in-the-middle Attack 327 13.2.3 Phishing and Spear Phishing Attacks 327 13.2.4 Drive-by Attack 327 13.2.5 Password Attack 328 13.2.6 SQL Injection Attack 328 13.2.7 Cross-site Scripting Attack 328 13.2.8 Eavesdropping 328 13.2.9 Birthday Attack 329 13.2.10 Malware Attack 329 13.3 Data Security and Most Common Encryption Methods 330 13.3.1 Data Encryption Standard (DES) 331 13.3.2 Triple DES 331 13.3.3 Rivest-Shamir-Adleman (RSA) 331 13.3.4 Advanced Encryption Standard (AES) 332 13.3.5 Twofish 334 13.4 Quality of Service (QoS) 334 13.4.1 Quantification of QoS 335 13.4.1.1 Data Quality Metrics 335 13.4.1.2 Network Quality Related Metrics 335 13.5 System Security 337 13.6 Privacy 339 13.7 Conclusions 339 References 340 14 Existing Projects and Platforms 345 14.1 Introduction 345 14.2 Existing Wearable Devices 347 14.3 BAN Programming Framework 348 14.4 Commercial Sensor Node Hardware Platforms 348 14.4.1 Mica2/MicaZ Motes 348 14.4.2 TelosB Mote 349 14.4.3 Indriya-Zigbee Based Platform 350 14.4.4 IRIS 350 14.4.5 iSense Core Wireless Module 351 14.4.6 Preon32 Wireless Module 351 14.4.7 Wasp Mote 352 14.4.8 WiSense Mote 352 14.4.9 panStamp NRG Mote 354 14.4.10 Jennic JN5139 354 14.5 BAN Software Platforms 355 14.5.1 Titan 355 14.5.2 CodeBlue 355 14.5.3 RehabSPOT 356 14.5.4 SPINE and SPINE2 356 14.5.5 C-SPINE 356 14.5.6 MAPS 356 14.5.7 DexterNet 356 14.6 Popular BAN Application Domains 356 14.7 Conclusions 359 References 359 15 Conclusions and Suggestions for Future Research 363 15.1 Summary 363 15.2 Future Directions in BSN Research 363 15.2.1 Smart Sensors: Intelligent, Biocompatible, and Wearable 364 15.2.2 Big Data Problem 366 15.2.3 Data Processing and Machine Learning 366 15.2.4 Decentralised and Cooperative Networks 367 15.2.5 Personalised Medicine Through Personalised Technology 367 15.2.6 Fitting BSN to 4G and 5G Communication Systems 367 15.2.7 Emerging Assistive Technology Applications 368 15.2.8 Solving Problems with Energy Harvesting 368 15.2.9 Virtual World 368 15.3 Conclusions 369 References 369 Index 373

「Nielsen BookData」 より

詳細情報

  • NII書誌ID(NCID)
    BB31500224
  • ISBN
    • 9781119390022
  • LCCN
    2019057875
  • 出版国コード
    us
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Hoboken, NJ
  • ページ数/冊数
    xv, 393 p. , [8] p. of plates
  • 大きさ
    25 cm
  • 分類
  • 件名
ページトップへ