A mathematical journey to relativity : deriving special and general relativity with basic mathematics
著者
書誌事項
A mathematical journey to relativity : deriving special and general relativity with basic mathematics
(Unitext for physics)
Springer, c2020
大学図書館所蔵 件 / 全4件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references and index
内容説明・目次
内容説明
This book opens with an axiomatic description of Euclidean and non-Euclidean geometries. Euclidean geometry is the starting point to understand all other geometries and it is the cornerstone for our basic intuition of vector spaces. The generalization to non-Euclidean geometry is the following step to develop the language of Special and General Relativity. These theories are discussed starting from a full geometric point of view. Differential geometry is presented in the simplest way and it is applied to describe the physical world. The final result of this construction is deriving the Einstein field equations for gravitation and spacetime dynamics. Possible solutions, and their physical implications are also discussed: the Schwarzschild metric, the relativistic trajectory of planets, the deflection of light, the black holes, the cosmological solutions like de Sitter, Friedmann-Lemaitre-Robertson-Walker, and Goedel ones. Some current problems like dark energy are also scketched. The book is self-contained and includes details of all proofs. It provides solutions or tips to solve problems and exercises. It is designed for undergraduate students and for all readers who want a first geometric approach to Special and General Relativity.
目次
1. Euclidean and Non- Euclidean Geometries: How they appear.- 2. Basic Facts in Euclidean and Minkowski Plane Geometry.- 3. Geometric Inversion, Cross Ratio, Projective Geometry and Poincare Disk Model.- 4. Surfaces in 3D-Spaces.- 5. Basic Differential Geometry.- 6. Non-Euclidean Geometries and their Physical Interpretation.- 7. Gravity in Newtonian Mechanics.- 8. Special Relativity.- 9. General Relativity and Relativistic Cosmology.- 10. A Geometric Realization of Relativity: The Affine Universe and de Sitter Spacetime.
「Nielsen BookData」 より