Big data science in finance
著者
書誌事項
Big data science in finance
Wiley, c2021
- : hardcover
電子リソースにアクセスする 全1件
大学図書館所蔵 件 / 全4件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references and index
内容説明・目次
内容説明
Explains the mathematics, theory, and methods of Big Data as applied to finance and investing
Data science has fundamentally changed Wall Street-applied mathematics and software code are increasingly driving finance and investment-decision tools. Big Data Science in Finance examines the mathematics, theory, and practical use of the revolutionary techniques that are transforming the industry. Designed for mathematically-advanced students and discerning financial practitioners alike, this energizing book presents new, cutting-edge content based on world-class research taught in the leading Financial Mathematics and Engineering programs in the world. Marco Avellaneda, a leader in quantitative finance, and quantitative methodology author Irene Aldridge help readers harness the power of Big Data.
Comprehensive in scope, this book offers in-depth instruction on how to separate signal from noise, how to deal with missing data values, and how to utilize Big Data techniques in decision-making. Key topics include data clustering, data storage optimization, Big Data dynamics, Monte Carlo methods and their applications in Big Data analysis, and more. This valuable book:
Provides a complete account of Big Data that includes proofs, step-by-step applications, and code samples
Explains the difference between Principal Component Analysis (PCA) and Singular Value Decomposition (SVD)
Covers vital topics in the field in a clear, straightforward manner
Compares, contrasts, and discusses Big Data and Small Data
Includes Cornell University-tested educational materials such as lesson plans, end-of-chapter questions, and downloadable lecture slides
Big Data Science in Finance: Mathematics and Applications is an important, up-to-date resource for students in economics, econometrics, finance, applied mathematics, industrial engineering, and business courses, and for investment managers, quantitative traders, risk and portfolio managers, and other financial practitioners.
目次
Foreword
Why Big Data?
Neural Networks in Finance
Supervised Models
Semi-supervised Learning
Letting the Data Speak with Unsupervised Learning
Big Data Factor Models
Data as a Signal versus Noise
Applications: Big Data in Options Pricing and Stochastic Modeling
Data Clustering
Conclusions
「Nielsen BookData」 より