AdS[3]/CFT[2] and holographic entanglement entropy
Author(s)
Bibliographic Information
AdS[3]/CFT[2] and holographic entanglement entropy
(Springer theses : recognizing outstanding Ph. D. research)
Springer, c2019
- Other Title
-
AdS3/CFT2 and holographic entanglement entropy
Available at 1 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
"Doctoral thesis accepted by Peking University, Beijing, China"
On t.p. "[3]" and "[2]" are subscript
Includes bibliographical references
Description and Table of Contents
Description
This book focuses on AdS3/CFT2, addressing different aspects of this correspondence in field theory and in gravity, including entanglement entropy, higher genus partition function, and conformal block. Holographic entanglement entropy is an important area in holographic and quantum information, which implies a deep relation between geometry and quantum entanglement. In this book, the authors use holographic entanglement entropy as a tool to investigate AdS3/CFT2. They study the entanglement entropy at high temperature in field theory and in holographics, and show that the results match each other in classical and one-loop order. In the AdS3/CFT2 system, they examine in detail the correspondence, exploring the higher genus partition function, entanglement entropy in a general system and conformal block, and they find good correspondence in field theory and gravity. The result strongly supports AdS3/CFT2 correspondence. In addition, they develop several important techniques in 2d CFT and 3d gravity, which also offer inspiration for other fields.
Table of Contents
Background.- Holographic Entanglement Entropy in a Finite System at Finite Temperature.- One Loop Partition Function.- Holographic Entanglement Entropy in a General System.- Conformal Block and the Holographic Description.- Conclusion and Outlook.
by "Nielsen BookData"