Micro-optics and energy : sensors for energy devices

著者

    • Lamb, Jacob J.
    • Pollet, Bruno G.

書誌事項

Micro-optics and energy : sensors for energy devices

Jacob J. Lamb, Bruno G. Pollet, editors

Springer, c2020

  • : hardback

大学図書館所蔵 件 / 1

この図書・雑誌をさがす

注記

Includes bibliographical references and index

内容説明・目次

内容説明

This book provides a brief research source for optical fiber sensors for energy production and storage systems, discussing fundamental aspects as well as cutting-edge trends in sensing. This volume provides industry professionals, researchers and students with the most updated review on technologies and current trends, thus helping them identify technology gaps, develop new materials and novel designs that lead to commercially viable energy storage systems.

目次

Preface Section 1: Optical Properties for Sensors Chapter 1.1: Introduction to Optical Sensors Authors: Jacob J. Lamb, Odne S. Burheim, Bruno G. Pollet and Dag R. Hjelme Dimensions of Electrochemical Energy Storage Devices Electrical vs Optical Sensors General Principles of Fibre Optic Sensor Systems Sensor Integration References Chapter 1.2: Light Properties and Sensors Authors: Markus S. Wahl, Rolf S. Kristian, Harald I. Muri, Jacob J. Lamb and Dag R. Hjelme Light as Electromagnetic Waves Mathematical Formalism Interaction of Light with Materials Dielectric Materials Semiconductor Physics pn-Junction Light Sources and Detection Thermal Sources Non-Thermal Sources Photodetectors Spectral Resolution Fibre Optic Waveguides Intrinsic Fibre Optic Sensors Discrete Point Temperature Sensors Distributed Temperature Sensors Extrinsic Fibre Optic Sensors Single Point RI or Chemical Optical Fibre Sensors References Section 2: Optical Sensor Measurements Chapter 2.1: Temperature and Humidity Measurements Authors: Markus S. Wahl, Harald I. Muri, Jacob J. Lamb, Rolf S. Kristian and Dag R. Hjelme Humidity as a Measurable Parameter Principle of Humidity Sensing Traditional Optical Humidity Detection Miniaturised Humidity Sensors Current Optical Temperature Sensor Technologies Blackbody Radiation-Based Temperature Sensing Absorption-Based Temperature Sensing Polarimetric-Based Temperature Sensors Interferometer-Based Temperature Sensors Fibre Bragg Grating Temperature Sensors Some Challenges and Solutions for Optical Fibre-Based Sensing References Chapter 2.2: Hydrogen Gas Measurements Authors: Harald I. Muri, Jacob J. Lamb, Markus S. Wahl, Rolf K. Snilsberg and Dag R. Hjelme Traditional Gas Optical Measurements Infrared Absorption Raman Scattering Raman- and IR-Based Optical Fibre Hydrogen Sensors Thin Film-Based Optical Fibre Hydrogen Sensors Measurement Principles Measurement Methods References Chapter 2.3: Sensor Fusion Authors: Harald I. Muri, Markus S. Wahl, Jacob J. Lamb, Rolf K. Snilsberg and Dag R. Hjelme Principle of Sensor Fusion Sensor Fusion Possibilities Data Handling References Section 3: Energy Production and Storage Chapter 3.1: Hydrogen Fuel Cells and Water Electrolysers Authors: Jacob J. Lamb, Odne S. Burheim and Bruno G. Pollet Introduction Hydrogen Production Traditional Production Electrochemical Production Turning Hydrogen into Electricity Effects of Temperature and Humidity Within PEMFCs Distribution of Temperature and Humidity Within PEMFCs Research Needs and Measurement Challenges Possibilities for Micro Optical Technologies in PEMFCs References Chapter 3.2: Ultrasound-Assisted Electrolytic Hydrogen Production Authors: Md Hujjatul Islam, Jacob J. Lamb, Odne S. Burheim and Bruno G. Pollet Introduction Hydrogen Production Methods Sonoelectrochemical Production of Hydrogen Effect of Ultrasound on the Hydrogen Evolution Reaction (HER) and the Oxygen Evolution Reaction (OER) Effect of Ultrasound on the Hydrogen Yield Summary and Outlook References Chapter 3.3: Low Grade Waste Heat to Hydrogen Authors: Yash D. Raka, Robert Bock, Jacob J. Lamb, Bruno G. Pollet and Odne S. Burheim Introduction Theoretical Background Regeneration Process Thermodynamic Model of a RED Cell Pumping System Model Mass Balances Waste Heat Regeneration System Economic Model Scenario Study Results and Discussion Feed Solution Concentration Membrane Properties: Permselectivity and Membrane Resistance Cell Geometry: Residence Time and Channel Thickness Economic Analysis: Membrane cost, membrane lifetime and cost of waste heat Economic Comparison: Capex and LCH Conclusion Refernces Chapter 3.4: Liquid Air Energy Storage Authors: Zhongxuan Liu, Federico Ustolin, Lena Spitthoff, Jacob J. Lamb, Tuls Gundersen, Bruno G. Pollet and Odne S. Burheim Introduction Thermal Energy Storage Electrical Energy Storage LAES Technologies Simulation of the Process Concepts Linde-Hampson Process Claude Process Kapitza Process Modified Claude Process Results and Discussion Future Prospects References Chapter 3.5: Hydrogen and Biogas Authors: Eline Gregorie, Jacob J. Lamb, Kristian M. Lien, Bruno G. Pollet and Odne S. Burheim Introduction Biogas Reforming for Hydrogen Production Reforming Techniques for Hydrogen Production Steam Reforming Process Partial Oxidation Reforming Process Autothermal Reforming Process Dry Reforming Process Dry Oxidation Reforming Hydrogen Purification Processes Condenser Unit Water-Gas Shift Reaction Pressure Swing Adsorption Membrane Reactors Biogas as Source for Reforming: The Influence of Impurities in Biogas Hydrogen Sulfide Oxygen Siloxanes Example of Plant and Economic Analysis Energy Storage & Biogas Upgrading using Renewable Hydrogen Methanation and Biogas Upgrading Catalytic Methanation Biological Methanation Methanation of Biogas and Comparison of Methanation Technologies Power-to-Biogas Process Carbon Source Electrolysers Consideration in the Case of PtG Chain The Efficiency of the Process Economic Consideration Conclusions References Chapter 3.6: Lifetime Expectancy of Lithium-ion Batteries Authors: Lena Spitthoff, Jacob J. Lamb, Bruno G. Pollet and Odne S. Burheim Introduction Terminology Working Principle of a Lithium-ion Battery Applications, Requirements and Problems Second Life Safety Concerns and Ageing Definitions and Calculations Chemistries Cathode Materials: LCO, LMO, NMC and LFP Anode Materials: Hard Carbon and Graphite Separator, Electrolyte and Additives Capacity Fading and Ageing Prospects Cycling: Capacity Fade as a Function of Temperature, C Rate and SOC Window Calendar Ageing: Capacity Fade as a Function of SOC and Temperature Ageing and Mechanisms Data Extraction Sensitivity Comparison Justification Outlook References Section 4: Micro-Optical Sensors in Energy Systems Chapter 4.1: Thermal Management of Lithium Ion Batteries Authors: Lena Spitthoff, Eilif S. Oyre, Harald I. Muri, Markus S. Wahl, Astrid F. Gunnarshaug, Jacob J. Lamb, Bruno G. Pollet and Odne S. Burheim Introduction System Description Importance of Thermal Management Calculating the Internal Heat Production Thermal Conductivity Measurement Determining Parameters Experimentally with Micro Optic Sensors Temperature Characterisation Requirements Fibre Bragg Grating Sensor Temperature Gradient Ratio Experimental Setup Calibration Implementation of Sensors into a Li-Ion Pouch Conclusion References Chapter 4.2: Reverse Electrodialysis Cells Authors: Kjersti W. Krakhella, Markus S. Wahl, Eilif S. Oyre, Jacob J. Lamb & and Odne S. Burheim Introduction Salinity Gradient Energy Storage Electrodialytic Energy Storage System Principles Determining Parameters Experimentally with Micro Optic Sensors Sensor Design Experimental Setup Calibration of Micro Sensors Implementation of Sensors into a Reverse Electrodialysis Cell Conclusion References Acknowledgements

「Nielsen BookData」 より

詳細情報

  • NII書誌ID(NCID)
    BC03589169
  • ISBN
    • 9783030436759
  • 出版国コード
    sz
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Cham
  • ページ数/冊数
    xiii, 207 p.
  • 大きさ
    25 cm
ページトップへ