Supervised machine learning : optimization framework and applications with SAS and R
著者
書誌事項
Supervised machine learning : optimization framework and applications with SAS and R
(A Chapman & Hall book)
CRC Press, 2021
- : hbk
- : pbk
大学図書館所蔵 全4件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
内容説明・目次
内容説明
AI framework intended to solve a problem of bias-variance tradeoff for supervised learning methods in real-life applications. The AI framework comprises of bootstrapping to create multiple training and testing data sets with various characteristics, design and analysis of statistical experiments to identify optimal feature subsets and optimal hyper-parameters for ML methods, data contamination to test for the robustness of the classifiers.
Key Features:
Using ML methods by itself doesn't ensure building classifiers that generalize well for new data
Identifying optimal feature subsets and hyper-parameters of ML methods can be resolved using design and analysis of statistical experiments
Using a bootstrapping approach to massive sampling of training and tests datasets with various data characteristics (e.g.: contaminated training sets) allows dealing with bias
Developing of SAS-based table-driven environment allows managing all meta-data related to the proposed AI framework and creating interoperability with R libraries to accomplish variety of statistical and machine-learning tasks
Computer programs in R and SAS that create AI framework are available on GitHub
目次
Introduction. PART 1 1.Introduction to the AI framework. 2.Supervised Machine Learning and Its Deployment in SAS and R. 3.Bootstrap methods and Its Deployment in SAS and R. 4.Outliers Detection and Its Deployment in SAS and R. 5.Design of Experiment and Its Deployment in SAS and R. PART II 1.Introduction to the SAS and R based table-driven environment. 2.Input Data component. 3.Design of Experiment for Machine-Learning component. 4."Contaminated" Training Datasets Component. PART III 1.Insurance Industry: Underwriters decision-making process. 2.Insurance Industry: Claims Modeling and Prediction. Index.
「Nielsen BookData」 より