Nonlinear oscillations : exact solutions and their approximations
著者
書誌事項
Nonlinear oscillations : exact solutions and their approximations
Springer, c2020
大学図書館所蔵 全2件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
内容説明・目次
内容説明
This book presents exact, closed-form solutions for the response of a variety of nonlinear oscillators (free, damped, forced). The solutions presented are expressed in terms of special functions. To help the reader understand these `non-standard' functions, detailed explanations and rich illustrations of their meanings and contents are provided. In addition, it is shown that these exact solutions in certain cases comprise the well-known approximate solutions for some nonlinear oscillations.
目次
1. Nonlinear oscillators in theoretical and practical systems
2. Free conservative oscillators
2.1.Overview: simple harmonic oscillators
2.2.Duffing-type oscillators
2.2.1. Hardening Duffing oscillators
2.2.2. Softening Duffing oscillators
2.2.3. Bistable Duffing oscillators
2.2.4. Pure cubic oscillators
2.3.Quadratic oscillators
2.4.Purely nonlinear oscillators
2.5.Oscillators with a constant restoring force
3. Free damped oscillators
3.1.Lagrangians and conservation laws for damped oscillators
3.2.Quadratic damping
3.2.1. In linear oscillators
3.2.2. In purely nonlinear oscillators
4. Forced oscillators: exacts solutions for specially designed external excitation
4.1.Forced response of Duffing-type oscillators
4.1.1. Exact solutions
4.1.2. Simplification to the case of harmonic excitation: related approximations
4.2.Forced response of purely nonlinear oscillators
4.2.1. Exact solutions
4.2.2. On some simplifications and approximations
4.3.Turning Duffing-type oscillators into simple harmonic oscillators
4.4.Turning Duffing-type oscillators into quadratic oscillators
4.5.Turning purely nonlinear oscillators into other oscillators
4.6.Hsu's approach with multi-term excitations
5. Isochronous oscillators
5.1.Making non-isochronous oscillators isochronous
5.2.Theorems on isochronous response of nonlinear oscillators
5.3.About Huygens' pendulum and its links with simple harmonic oscillators
5.4.Isochronicity in forced nonlinear oscillators
6. Chains of oscillators
6.1.Chains with purely nonlinear springs
6.6.1. Pure cubic case
6.6.2. General case: positive real-power nonlinearity
6.2.Generalization to nonlinear continuous systems
6.3.Equivalent stiffness in systems of parallel nonlinear springs
Appendix 1: On Beta and Gamma functions (definitions, expressions, series expansions)
Appendix 2: On Jacobi elliptic functions (definitions, relationships, Fourier series)
Appendix 3: On Ateb functions (definitions, relationships, Fourier series)
Appendix 4: On Wave functions (definitions, relationships, Fourier series)
「Nielsen BookData」 より