Explanatory model analysis : explore, explain, and examine predictive models

著者

    • Biecek, Przemyslaw
    • Burzykowski, Tomasz

書誌事項

Explanatory model analysis : explore, explain, and examine predictive models

Przemyslaw Biecek, Tomasz Burzykowski

(Chapman & Hall/CRC data science series)

CRC Press, 2021

  • : hbk

大学図書館所蔵 件 / 4

この図書・雑誌をさがす

注記

Includes bibliographical references (p. 295-303) and index

内容説明・目次

内容説明

Explanatory Model Analysis Explore, Explain and Examine Predictive Models is a set of methods and tools designed to build better predictive models and to monitor their behaviour in a changing environment. Today, the true bottleneck in predictive modelling is neither the lack of data, nor the lack of computational power, nor inadequate algorithms, nor the lack of flexible models. It is the lack of tools for model exploration (extraction of relationships learned by the model), model explanation (understanding the key factors influencing model decisions) and model examination (identification of model weaknesses and evaluation of model's performance). This book presents a collection of model agnostic methods that may be used for any black-box model together with real-world applications to classification and regression problems.

目次

I. Introduction 1. Introduction. 2. Model Development. 3. Do-it-yourself. 4. Datasets and models. II. Instance Level. 5. Introduction to Instance-level Exploration. 6. Break-down Plots for Additive Attributions. 7. Break-down Plots for Interactions. 8. Shapley Additive Explanations (SHAP) for Average Attributions. 9. Local Interpretable Model-agnostic Explanations (LIME). 10. Ceteris-paribus Profiles. 11. Ceteris-paribus Oscillations. 12. Local-diagnostics Plots. 13. Summary of Instance-level Exploration. III. Dataset Level. 14. Introduction to Dataset-level Exploration. 15. Model-performance Measures. 16. Variable-importance Measures. 17. Partial-dependence Profiles. 18. Local-dependence and Accumulated-dependence Profiles. 19. Residual Diagnostics Plots. 20. Summary of Model-level Exploration. IV. Use-cases. 21. FIFA 19.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BC04227899
  • ISBN
    • 9780367135591
  • 出版国コード
    us
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Boca Raton
  • ページ数/冊数
    xiii, 209 p.
  • 大きさ
    24 cm
  • 分類
  • 件名
  • 親書誌ID
ページトップへ