Explanatory model analysis : explore, explain, and examine predictive models
著者
書誌事項
Explanatory model analysis : explore, explain, and examine predictive models
(Chapman & Hall/CRC data science series)
CRC Press, 2021
- : hbk
大学図書館所蔵 件 / 全4件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references (p. 295-303) and index
内容説明・目次
内容説明
Explanatory Model Analysis Explore, Explain and Examine Predictive Models is a set of methods and tools designed to build better predictive models and to monitor their behaviour in a changing environment. Today, the true bottleneck in predictive modelling is neither the lack of data, nor the lack of computational power, nor inadequate algorithms, nor the lack of flexible models. It is the lack of tools for model exploration (extraction of relationships learned by the model), model explanation (understanding the key factors influencing model decisions) and model examination (identification of model weaknesses and evaluation of model's performance). This book presents a collection of model agnostic methods that may be used for any black-box model together with real-world applications to classification and regression problems.
目次
I. Introduction 1. Introduction. 2. Model Development. 3. Do-it-yourself. 4. Datasets and models. II. Instance Level. 5. Introduction to Instance-level Exploration. 6. Break-down Plots for Additive Attributions. 7. Break-down Plots for Interactions. 8. Shapley Additive Explanations (SHAP) for Average Attributions. 9. Local Interpretable Model-agnostic Explanations (LIME). 10. Ceteris-paribus Profiles. 11. Ceteris-paribus Oscillations. 12. Local-diagnostics Plots. 13. Summary of Instance-level Exploration. III. Dataset Level. 14. Introduction to Dataset-level Exploration. 15. Model-performance Measures. 16. Variable-importance Measures. 17. Partial-dependence Profiles. 18. Local-dependence and Accumulated-dependence Profiles. 19. Residual Diagnostics Plots. 20. Summary of Model-level Exploration. IV. Use-cases. 21. FIFA 19.
「Nielsen BookData」 より