Partial differential equations
Author(s)
Bibliographic Information
Partial differential equations
(Graduate texts in mathematics, 214)
Springer, c2013
3rd ed
- : pbk
Available at 1 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
"Softcover reprint of the hardcover 3rd edition 2013" --T.p. verso
Includes bibliographical references (p. 401-402) and index
Description and Table of Contents
Description
This book offers an ideal graduate-level introduction to the theory of partial differential equations. The first part of the book describes the basic mathematical problems and structures associated with elliptic, parabolic, and hyperbolic partial differential equations, and explores the connections between these fundamental types. Aspects of Brownian motion or pattern formation processes are also presented. The second part focuses on existence schemes and develops estimates for solutions of elliptic equations, such as Sobolev space theory, weak and strong solutions, Schauder estimates, and Moser iteration. In particular, the reader will learn the basic techniques underlying current research in elliptic partial differential equations.
This revised and expanded third edition is enhanced with many additional examples that will help motivate the reader. New features include a reorganized and extended chapter on hyperbolic equations, as well as a new chapter on the relations between different types of partial differential equations, including first-order hyperbolic systems, Langevin and Fokker-Planck equations, viscosity solutions for elliptic PDEs, and much more. Also, the new edition contains additional material on systems of elliptic partial differential equations, and it explains in more detail how the Harnack inequality can be used for the regularity of solutions.
Table of Contents
Preface.- Introduction: What are Partial Differential Equations?.- 1 The Laplace equation as the Prototype of an Elliptic Partial Differential Equation of Second Order.- 2 The Maximum Principle.- 3 Existence Techniques I: Methods Based on the Maximum Principle.- 4 Existence Techniques II: Parabolic Methods. The Heat Equation.- 5 Reaction-Diffusion Equations and Systems.- 6 Hyperbolic Equations.- 7 The Heat Equation, Semigroups, and Brownian Motion.- 8 Relationships between Different Partial Differential Equations.- 9 The Dirichlet Principle. Variational Methods for the Solutions of PDEs (Existence Techniques III).- 10 Sobolev Spaces and L^2 Regularity theory.- 11 Strong solutions.- 12 The Regularity Theory of Schauder and the Continuity Method (Existence Techniques IV).- 13The Moser Iteration Method and the Regularity Theorem of de Giorgi and Nash.- Appendix: Banach and Hilbert spaces. The L^p-Spaces.- References.- Index of Notation.- Index.
by "Nielsen BookData"